Cargando…
E2SGAN: EEG-to-SEEG translation with generative adversarial networks
High-quality brain signal data recorded by Stereoelectroencephalography (SEEG) electrodes provide clinicians with clear guidance for presurgical assessments for epilepsy surgeries. SEEG, however, is limited to selected patients with epilepsy due to its invasive procedure. In this work, a brain signa...
Autores principales: | Hu, Mengqi, Chen, Jin, Jiang, Shize, Ji, Wendi, Mei, Shuhao, Chen, Liang, Wang, Xiaoling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477431/ https://www.ncbi.nlm.nih.gov/pubmed/36117642 http://dx.doi.org/10.3389/fnins.2022.971829 |
Ejemplares similares
-
SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems
por: Aldhaheri, Sahar, et al.
Publicado: (2023) -
A multi-frame network model for predicting seizure based on sEEG and iEEG data
por: Lu, Liangfu, et al.
Publicado: (2022) -
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Time-Series Generative Adversarial Network Approach of Deep Learning Improves Seizure Detection From the Human Thalamic SEEG
por: Ganti, Bhargava, et al.
Publicado: (2022) -
EEG Signal Reconstruction Using a Generative Adversarial Network With Wasserstein Distance and Temporal-Spatial-Frequency Loss
por: Luo, Tian-jian, et al.
Publicado: (2020)