Cargando…
Denoising diffusion weighted imaging data using convolutional neural networks
Diffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue microstructure measurements; however, high b-value DWI images contain high noise levels that can overwhelm the signal of interest and bias microstructural measurements. Here, we propose a simple denoising...
Autores principales: | Cheng, Hu, Vinci-Booher, Sophia, Wang, Jian, Caron, Bradley, Wen, Qiuting, Newman, Sharlene, Pestilli, Franco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477507/ https://www.ncbi.nlm.nih.gov/pubmed/36108272 http://dx.doi.org/10.1371/journal.pone.0274396 |
Ejemplares similares
-
Multi-View Image Denoising Using Convolutional Neural Network
por: Zhou, Shiwei, et al.
Publicado: (2019) -
Multi-Scale Feature Learning Convolutional Neural Network for Image Denoising
por: Zhang, Shuo, et al.
Publicado: (2023) -
Method for Quantum Denoisers Using Convolutional Neural Network
por: Kim, Bong-Hyun, et al.
Publicado: (2022) -
A Quantized Convolutional Neural Network Implemented With Memristor for Image Denoising and Recognition
por: Zhang, Yuejun, et al.
Publicado: (2021) -
Multi-channel framelet denoising of diffusion-weighted images
por: Chen, Geng, et al.
Publicado: (2019)