Cargando…

ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret biological implications of computational results. Hence, a theory for efficiently annotating indivi...

Descripción completa

Detalles Bibliográficos
Autores principales: Iida, Keita, Kondo, Jumpei, Wibisana, Johannes Nicolaus, Inoue, Masahiro, Okada, Mariko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477531/
https://www.ncbi.nlm.nih.gov/pubmed/35924984
http://dx.doi.org/10.1093/bioinformatics/btac541
_version_ 1784790382017511424
author Iida, Keita
Kondo, Jumpei
Wibisana, Johannes Nicolaus
Inoue, Masahiro
Okada, Mariko
author_facet Iida, Keita
Kondo, Jumpei
Wibisana, Johannes Nicolaus
Inoue, Masahiro
Okada, Mariko
author_sort Iida, Keita
collection PubMed
description MOTIVATION: Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret biological implications of computational results. Hence, a theory for efficiently annotating individual cells remains warranted. RESULTS: We present ASURAT, a computational tool for simultaneously performing unsupervised clustering and functional annotation of disease, cell type, biological process and signaling pathway activity for single-cell transcriptomic data, using a correlation graph decomposition for genes in database-derived functional terms. We validated the usability and clustering performance of ASURAT using scRNA-seq datasets for human peripheral blood mononuclear cells, which required fewer manual curations than existing methods. Moreover, we applied ASURAT to scRNA-seq and spatial transcriptome datasets for human small cell lung cancer and pancreatic ductal adenocarcinoma, respectively, identifying previously overlooked subpopulations and differentially expressed genes. ASURAT is a powerful tool for dissecting cell subpopulations and improving biological interpretability of complex and noisy transcriptomic data. AVAILABILITY AND IMPLEMENTATION: ASURAT is published on Bioconductor (https://doi.org/10.18129/B9.bioc.ASURAT). The codes for analyzing data in this article are available at Github (https://github.com/keita-iida/ASURATBI) and figshare (https://doi.org/10.6084/m9.figshare.19200254.v4). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-9477531
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-94775312022-09-19 ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes Iida, Keita Kondo, Jumpei Wibisana, Johannes Nicolaus Inoue, Masahiro Okada, Mariko Bioinformatics Original Papers MOTIVATION: Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret biological implications of computational results. Hence, a theory for efficiently annotating individual cells remains warranted. RESULTS: We present ASURAT, a computational tool for simultaneously performing unsupervised clustering and functional annotation of disease, cell type, biological process and signaling pathway activity for single-cell transcriptomic data, using a correlation graph decomposition for genes in database-derived functional terms. We validated the usability and clustering performance of ASURAT using scRNA-seq datasets for human peripheral blood mononuclear cells, which required fewer manual curations than existing methods. Moreover, we applied ASURAT to scRNA-seq and spatial transcriptome datasets for human small cell lung cancer and pancreatic ductal adenocarcinoma, respectively, identifying previously overlooked subpopulations and differentially expressed genes. ASURAT is a powerful tool for dissecting cell subpopulations and improving biological interpretability of complex and noisy transcriptomic data. AVAILABILITY AND IMPLEMENTATION: ASURAT is published on Bioconductor (https://doi.org/10.18129/B9.bioc.ASURAT). The codes for analyzing data in this article are available at Github (https://github.com/keita-iida/ASURATBI) and figshare (https://doi.org/10.6084/m9.figshare.19200254.v4). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-08-04 /pmc/articles/PMC9477531/ /pubmed/35924984 http://dx.doi.org/10.1093/bioinformatics/btac541 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Original Papers
Iida, Keita
Kondo, Jumpei
Wibisana, Johannes Nicolaus
Inoue, Masahiro
Okada, Mariko
ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
title ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
title_full ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
title_fullStr ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
title_full_unstemmed ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
title_short ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
title_sort asurat: functional annotation-driven unsupervised clustering of single-cell transcriptomes
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477531/
https://www.ncbi.nlm.nih.gov/pubmed/35924984
http://dx.doi.org/10.1093/bioinformatics/btac541
work_keys_str_mv AT iidakeita asuratfunctionalannotationdrivenunsupervisedclusteringofsinglecelltranscriptomes
AT kondojumpei asuratfunctionalannotationdrivenunsupervisedclusteringofsinglecelltranscriptomes
AT wibisanajohannesnicolaus asuratfunctionalannotationdrivenunsupervisedclusteringofsinglecelltranscriptomes
AT inouemasahiro asuratfunctionalannotationdrivenunsupervisedclusteringofsinglecelltranscriptomes
AT okadamariko asuratfunctionalannotationdrivenunsupervisedclusteringofsinglecelltranscriptomes