Cargando…
SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia
Schizophrenia (SZ) is a severe and prolonged disorder of the human brain where people interpret reality in an abnormal way. Traditional methods of SZ detection are based on handcrafted feature extraction methods (manual process), which are tedious and unsophisticated, and also limited in their abili...
Autores principales: | Siuly, Siuly, Li, Yan, Wen, Peng, Alcin, Omer Faruk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477585/ https://www.ncbi.nlm.nih.gov/pubmed/36120676 http://dx.doi.org/10.1155/2022/1992596 |
Ejemplares similares
-
Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture
por: Kim, Jeong-Hwan, et al.
Publicado: (2019) -
Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
por: Xie, Shipeng, et al.
Publicado: (2018) -
Performance Comparisons of AlexNet and GoogLeNet in Cell Growth Inhibition IC50 Prediction
por: Lee, Yeeun, et al.
Publicado: (2021) -
Dynamic ECG signal quality evaluation based on persistent homology and GoogLeNet method
por: Ren, Yonglian, et al.
Publicado: (2023) -
NHL Pathological Image Classification Based on Hierarchical Local Information and GoogLeNet-Based Representations
por: Bai, Jie, et al.
Publicado: (2019)