Cargando…
IoT malware detection architecture using a novel channel boosted and squeezed CNN
Interaction between devices, people, and the Internet has given birth to a new digital communication model, the internet of things (IoT). The integration of smart devices to constitute a network introduces many security challenges. These connected devices have created a security blind spot, where cy...
Autores principales: | Asam, Muhammad, Khan, Saddam Hussain, Akbar, Altaf, Bibi, Sameena, Jamal, Tauseef, Khan, Asifullah, Ghafoor, Usman, Bhutta, Muhammad Raheel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477830/ https://www.ncbi.nlm.nih.gov/pubmed/36109570 http://dx.doi.org/10.1038/s41598-022-18936-9 |
Ejemplares similares
-
A New Deep Hybrid Boosted and Ensemble Learning-Based Brain Tumor Analysis Using MRI
por: Zahoor, Mirza Mumtaz, et al.
Publicado: (2022) -
Malware Detection in Internet of Things (IoT) Devices Using Deep Learning
por: Riaz, Sharjeel, et al.
Publicado: (2022) -
An Efficient CNN-Based Deep Learning Model to Detect Malware Attacks (CNN-DMA) in 5G-IoT Healthcare Applications
por: Anand, Ankita, et al.
Publicado: (2021) -
Parametric Optimization for Quality of Electric Discharge Machined Profile by Using Multi-Shape Electrode
por: Gillani, Fouzia, et al.
Publicado: (2022) -
Transfer Learning for Image-Based Malware Detection for IoT
por: Panda, Pratyush, et al.
Publicado: (2023)