Cargando…
Lossy compression of matrices by black box optimisation of mixed integer nonlinear programming
In edge computing, suppressing data size is a challenge for machine learning models that perform complex tasks such as autonomous driving, in which computational resources (speed, memory size and power) are limited. Efficient lossy compression of matrix data has been introduced by decomposing it int...
Autores principales: | Kadowaki, Tadashi, Ambai, Mitsuru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477857/ https://www.ncbi.nlm.nih.gov/pubmed/36109622 http://dx.doi.org/10.1038/s41598-022-19763-8 |
Ejemplares similares
-
Mixed Integer Nonlinear Programming
por: Lee, Jon, et al.
Publicado: (2012) -
Nonlinear Integer Programming
por: Li, Duan, et al.
Publicado: (2006) -
Relaxation and decomposition methods for mixed integer nonlinear programming
por: Nowak, Ivo, et al.
Publicado: (2005) -
The evolution of lossy compression
por: Marzen, Sarah E., et al.
Publicado: (2017) -
An extension of the mixed integer part of a nonlinear form
por: Wang, Yunhan, et al.
Publicado: (2017)