Cargando…
Batch effects removal for microbiome data via conditional quantile regression
Batch effects in microbiome data arise from differential processing of specimens and can lead to spurious findings and obscure true signals. Strategies designed for genomic data to mitigate batch effects usually fail to address the zero-inflated and over-dispersed microbiome data. Most strategies ta...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477887/ https://www.ncbi.nlm.nih.gov/pubmed/36109499 http://dx.doi.org/10.1038/s41467-022-33071-9 |
_version_ | 1784790461354868736 |
---|---|
author | Ling, Wodan Lu, Jiuyao Zhao, Ni Lulla, Anju Plantinga, Anna M. Fu, Weijia Zhang, Angela Liu, Hongjiao Song, Hoseung Li, Zhigang Chen, Jun Randolph, Timothy W. Koay, Wei Li A. White, James R. Launer, Lenore J. Fodor, Anthony A. Meyer, Katie A. Wu, Michael C. |
author_facet | Ling, Wodan Lu, Jiuyao Zhao, Ni Lulla, Anju Plantinga, Anna M. Fu, Weijia Zhang, Angela Liu, Hongjiao Song, Hoseung Li, Zhigang Chen, Jun Randolph, Timothy W. Koay, Wei Li A. White, James R. Launer, Lenore J. Fodor, Anthony A. Meyer, Katie A. Wu, Michael C. |
author_sort | Ling, Wodan |
collection | PubMed |
description | Batch effects in microbiome data arise from differential processing of specimens and can lead to spurious findings and obscure true signals. Strategies designed for genomic data to mitigate batch effects usually fail to address the zero-inflated and over-dispersed microbiome data. Most strategies tailored for microbiome data are restricted to association testing or specialized study designs, failing to allow other analytic goals or general designs. Here, we develop the Conditional Quantile Regression (ConQuR) approach to remove microbiome batch effects using a two-part quantile regression model. ConQuR is a comprehensive method that accommodates the complex distributions of microbial read counts by non-parametric modeling, and it generates batch-removed zero-inflated read counts that can be used in and benefit usual subsequent analyses. We apply ConQuR to simulated and real microbiome datasets and demonstrate its advantages in removing batch effects while preserving the signals of interest. |
format | Online Article Text |
id | pubmed-9477887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-94778872022-09-17 Batch effects removal for microbiome data via conditional quantile regression Ling, Wodan Lu, Jiuyao Zhao, Ni Lulla, Anju Plantinga, Anna M. Fu, Weijia Zhang, Angela Liu, Hongjiao Song, Hoseung Li, Zhigang Chen, Jun Randolph, Timothy W. Koay, Wei Li A. White, James R. Launer, Lenore J. Fodor, Anthony A. Meyer, Katie A. Wu, Michael C. Nat Commun Article Batch effects in microbiome data arise from differential processing of specimens and can lead to spurious findings and obscure true signals. Strategies designed for genomic data to mitigate batch effects usually fail to address the zero-inflated and over-dispersed microbiome data. Most strategies tailored for microbiome data are restricted to association testing or specialized study designs, failing to allow other analytic goals or general designs. Here, we develop the Conditional Quantile Regression (ConQuR) approach to remove microbiome batch effects using a two-part quantile regression model. ConQuR is a comprehensive method that accommodates the complex distributions of microbial read counts by non-parametric modeling, and it generates batch-removed zero-inflated read counts that can be used in and benefit usual subsequent analyses. We apply ConQuR to simulated and real microbiome datasets and demonstrate its advantages in removing batch effects while preserving the signals of interest. Nature Publishing Group UK 2022-09-15 /pmc/articles/PMC9477887/ /pubmed/36109499 http://dx.doi.org/10.1038/s41467-022-33071-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ling, Wodan Lu, Jiuyao Zhao, Ni Lulla, Anju Plantinga, Anna M. Fu, Weijia Zhang, Angela Liu, Hongjiao Song, Hoseung Li, Zhigang Chen, Jun Randolph, Timothy W. Koay, Wei Li A. White, James R. Launer, Lenore J. Fodor, Anthony A. Meyer, Katie A. Wu, Michael C. Batch effects removal for microbiome data via conditional quantile regression |
title | Batch effects removal for microbiome data via conditional quantile regression |
title_full | Batch effects removal for microbiome data via conditional quantile regression |
title_fullStr | Batch effects removal for microbiome data via conditional quantile regression |
title_full_unstemmed | Batch effects removal for microbiome data via conditional quantile regression |
title_short | Batch effects removal for microbiome data via conditional quantile regression |
title_sort | batch effects removal for microbiome data via conditional quantile regression |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477887/ https://www.ncbi.nlm.nih.gov/pubmed/36109499 http://dx.doi.org/10.1038/s41467-022-33071-9 |
work_keys_str_mv | AT lingwodan batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT lujiuyao batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT zhaoni batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT lullaanju batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT plantingaannam batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT fuweijia batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT zhangangela batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT liuhongjiao batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT songhoseung batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT lizhigang batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT chenjun batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT randolphtimothyw batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT koayweilia batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT whitejamesr batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT launerlenorej batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT fodoranthonya batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT meyerkatiea batcheffectsremovalformicrobiomedataviaconditionalquantileregression AT wumichaelc batcheffectsremovalformicrobiomedataviaconditionalquantileregression |