Cargando…

Batch effects removal for microbiome data via conditional quantile regression

Batch effects in microbiome data arise from differential processing of specimens and can lead to spurious findings and obscure true signals. Strategies designed for genomic data to mitigate batch effects usually fail to address the zero-inflated and over-dispersed microbiome data. Most strategies ta...

Descripción completa

Detalles Bibliográficos
Autores principales: Ling, Wodan, Lu, Jiuyao, Zhao, Ni, Lulla, Anju, Plantinga, Anna M., Fu, Weijia, Zhang, Angela, Liu, Hongjiao, Song, Hoseung, Li, Zhigang, Chen, Jun, Randolph, Timothy W., Koay, Wei Li A., White, James R., Launer, Lenore J., Fodor, Anthony A., Meyer, Katie A., Wu, Michael C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477887/
https://www.ncbi.nlm.nih.gov/pubmed/36109499
http://dx.doi.org/10.1038/s41467-022-33071-9
_version_ 1784790461354868736
author Ling, Wodan
Lu, Jiuyao
Zhao, Ni
Lulla, Anju
Plantinga, Anna M.
Fu, Weijia
Zhang, Angela
Liu, Hongjiao
Song, Hoseung
Li, Zhigang
Chen, Jun
Randolph, Timothy W.
Koay, Wei Li A.
White, James R.
Launer, Lenore J.
Fodor, Anthony A.
Meyer, Katie A.
Wu, Michael C.
author_facet Ling, Wodan
Lu, Jiuyao
Zhao, Ni
Lulla, Anju
Plantinga, Anna M.
Fu, Weijia
Zhang, Angela
Liu, Hongjiao
Song, Hoseung
Li, Zhigang
Chen, Jun
Randolph, Timothy W.
Koay, Wei Li A.
White, James R.
Launer, Lenore J.
Fodor, Anthony A.
Meyer, Katie A.
Wu, Michael C.
author_sort Ling, Wodan
collection PubMed
description Batch effects in microbiome data arise from differential processing of specimens and can lead to spurious findings and obscure true signals. Strategies designed for genomic data to mitigate batch effects usually fail to address the zero-inflated and over-dispersed microbiome data. Most strategies tailored for microbiome data are restricted to association testing or specialized study designs, failing to allow other analytic goals or general designs. Here, we develop the Conditional Quantile Regression (ConQuR) approach to remove microbiome batch effects using a two-part quantile regression model. ConQuR is a comprehensive method that accommodates the complex distributions of microbial read counts by non-parametric modeling, and it generates batch-removed zero-inflated read counts that can be used in and benefit usual subsequent analyses. We apply ConQuR to simulated and real microbiome datasets and demonstrate its advantages in removing batch effects while preserving the signals of interest.
format Online
Article
Text
id pubmed-9477887
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94778872022-09-17 Batch effects removal for microbiome data via conditional quantile regression Ling, Wodan Lu, Jiuyao Zhao, Ni Lulla, Anju Plantinga, Anna M. Fu, Weijia Zhang, Angela Liu, Hongjiao Song, Hoseung Li, Zhigang Chen, Jun Randolph, Timothy W. Koay, Wei Li A. White, James R. Launer, Lenore J. Fodor, Anthony A. Meyer, Katie A. Wu, Michael C. Nat Commun Article Batch effects in microbiome data arise from differential processing of specimens and can lead to spurious findings and obscure true signals. Strategies designed for genomic data to mitigate batch effects usually fail to address the zero-inflated and over-dispersed microbiome data. Most strategies tailored for microbiome data are restricted to association testing or specialized study designs, failing to allow other analytic goals or general designs. Here, we develop the Conditional Quantile Regression (ConQuR) approach to remove microbiome batch effects using a two-part quantile regression model. ConQuR is a comprehensive method that accommodates the complex distributions of microbial read counts by non-parametric modeling, and it generates batch-removed zero-inflated read counts that can be used in and benefit usual subsequent analyses. We apply ConQuR to simulated and real microbiome datasets and demonstrate its advantages in removing batch effects while preserving the signals of interest. Nature Publishing Group UK 2022-09-15 /pmc/articles/PMC9477887/ /pubmed/36109499 http://dx.doi.org/10.1038/s41467-022-33071-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ling, Wodan
Lu, Jiuyao
Zhao, Ni
Lulla, Anju
Plantinga, Anna M.
Fu, Weijia
Zhang, Angela
Liu, Hongjiao
Song, Hoseung
Li, Zhigang
Chen, Jun
Randolph, Timothy W.
Koay, Wei Li A.
White, James R.
Launer, Lenore J.
Fodor, Anthony A.
Meyer, Katie A.
Wu, Michael C.
Batch effects removal for microbiome data via conditional quantile regression
title Batch effects removal for microbiome data via conditional quantile regression
title_full Batch effects removal for microbiome data via conditional quantile regression
title_fullStr Batch effects removal for microbiome data via conditional quantile regression
title_full_unstemmed Batch effects removal for microbiome data via conditional quantile regression
title_short Batch effects removal for microbiome data via conditional quantile regression
title_sort batch effects removal for microbiome data via conditional quantile regression
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477887/
https://www.ncbi.nlm.nih.gov/pubmed/36109499
http://dx.doi.org/10.1038/s41467-022-33071-9
work_keys_str_mv AT lingwodan batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT lujiuyao batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT zhaoni batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT lullaanju batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT plantingaannam batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT fuweijia batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT zhangangela batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT liuhongjiao batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT songhoseung batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT lizhigang batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT chenjun batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT randolphtimothyw batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT koayweilia batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT whitejamesr batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT launerlenorej batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT fodoranthonya batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT meyerkatiea batcheffectsremovalformicrobiomedataviaconditionalquantileregression
AT wumichaelc batcheffectsremovalformicrobiomedataviaconditionalquantileregression