Cargando…
Batch effects removal for microbiome data via conditional quantile regression
Batch effects in microbiome data arise from differential processing of specimens and can lead to spurious findings and obscure true signals. Strategies designed for genomic data to mitigate batch effects usually fail to address the zero-inflated and over-dispersed microbiome data. Most strategies ta...
Autores principales: | Ling, Wodan, Lu, Jiuyao, Zhao, Ni, Lulla, Anju, Plantinga, Anna M., Fu, Weijia, Zhang, Angela, Liu, Hongjiao, Song, Hoseung, Li, Zhigang, Chen, Jun, Randolph, Timothy W., Koay, Wei Li A., White, James R., Launer, Lenore J., Fodor, Anthony A., Meyer, Katie A., Wu, Michael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477887/ https://www.ncbi.nlm.nih.gov/pubmed/36109499 http://dx.doi.org/10.1038/s41467-022-33071-9 |
Ejemplares similares
-
Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ)
por: Ling, Wodan, et al.
Publicado: (2021) -
Accommodating multiple potential normalizations in microbiome associations studies
por: Song, Hoseung, et al.
Publicado: (2023) -
Quantile regression
por: Koenker, Roger
Publicado: (2005) -
Gut microbiome and stages of diabetes in middle-aged adults: CARDIA microbiome study
por: Hu, Yi-Han, et al.
Publicado: (2023) -
Handbook of quantile regression
por: Koenker, Roger, et al.
Publicado: (2017)