Cargando…
Machine unlearning: linear filtration for logit-based classifiers
Recently enacted legislation grants individuals certain rights to decide in what fashion their personal data may be used and in particular a “right to be forgotten”. This poses a challenge to machine learning: how to proceed when an individual retracts permission to use data which has been part of t...
Autores principales: | Baumhauer, Thomas, Schöttle, Pascal, Zeppelzauer, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477916/ https://www.ncbi.nlm.nih.gov/pubmed/36124289 http://dx.doi.org/10.1007/s10994-022-06178-9 |
Ejemplares similares
-
Deep Classification with Linearity-Enhanced Logits to Softmax Function
por: Shao, Hao, et al.
Publicado: (2023) -
Application of LogitBoost Classifier for Traceability Using SNP Chip Data
por: Kim, Kwondo, et al.
Publicado: (2015) -
Learning and Unlearning of Pain
por: Cordier, Larissa, et al.
Publicado: (2018) -
Lessons learned and unlearned in periodontal microbiology
por: Teles, Ricardo, et al.
Publicado: (2013) -
Learning, Unlearning and Re-Learning Curves
por: Jones, Alan
Publicado: (2018)