Cargando…
Natural polyphenol self-assembled pH-responsive nanoparticles loaded into reversible hydrogel to inhibit oral bacterial activity
Periodontitis is one of the most prevalent chronic inflammatory diseases and Polyphenols isolated from Turkish gall play a major role in the treatment of inflammatory diseases for their antibacterial, anti-inflammatory and antioxidant activities. In this work, Turkish Galls effective constituent (TG...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478017/ https://www.ncbi.nlm.nih.gov/pubmed/36109447 http://dx.doi.org/10.1186/s43556-022-00082-3 |
Sumario: | Periodontitis is one of the most prevalent chronic inflammatory diseases and Polyphenols isolated from Turkish gall play a major role in the treatment of inflammatory diseases for their antibacterial, anti-inflammatory and antioxidant activities. In this work, Turkish Galls effective constituent (TGEC, T) was prepared into nanoparticles (T-NPs) by principle of oxidative self-polymerization. The pH-sensitive T-NPs was encapsulated into thermosensitive type in-situ hydrogel, and 42.29 ± 1.12% of effective constituent from T-NPs were continuously released within 96 h under the periodontitis environment. In addition, the weakly alkaline oral micro-environment of patients with periodontitis is more conducive to the sustained release of effective constituent, which is 10.83% more than that of healthy periodontal environment. The bacteriostatic test showed that T-NPs had stronger antibacterial activity on oral pathogens than that of TGEC. Compared with TGEC, the minimum inhibitory concentration (MIC) of T-NPs against P. gingivalis and A. viscosus was reduced by 50% and 25%, respectively. Interestingly, T-NPs induced bacteria lysis by promoting the excessive production of ROS without periodontal tissue damage caused by excessive oxidation reaction. In conclusion, a simple method of preparing microspheres with natural polyphenols was developed, which provides beneficial reference for one-step prepared drug carriers from effective components of natural product, likewise the method offers a green and effective solution to synthesis a new adjuvant therapy drugs for treatment of gingivitis associated with periodontal pockets. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43556-022-00082-3. |
---|