Cargando…
SAPPHIRE.CNN: Implementation of dRNA-seq-driven, species-specific promoter prediction using convolutional neural networks
Data availability is a consistent bottleneck for the development of bacterial species-specific promoter prediction software. In this work we leverage genome-wide promoter datasets generated with dRNA-seq in the Gram-negative bacteria Pseudomonas aeruginosa and Salmonella enterica for promoter predic...
Autores principales: | Coppens, Lucas, Wicke, Laura, Lavigne, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478156/ https://www.ncbi.nlm.nih.gov/pubmed/36147675 http://dx.doi.org/10.1016/j.csbj.2022.09.006 |
Ejemplares similares
-
SAPPHIRE: a neural network based classifier for σ70 promoter prediction in Pseudomonas
por: Coppens, Lucas, et al.
Publicado: (2020) -
Transcript mapping based on dRNA-seq data
por: Bischler, Thorsten, et al.
Publicado: (2014) -
TSSAR: TSS annotation regime for dRNA-seq data
por: Amman, Fabian, et al.
Publicado: (2014) -
Introducing differential RNA-seq mapping to track the early infection phase for Pseudomonas phage ɸKZ
por: Wicke, Laura, et al.
Publicado: (2020) -
Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq)
por: Babski, Julia, et al.
Publicado: (2016)