Cargando…

Antidiabetic potential of polysaccharides from Brasenia schreberi regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice

This study aimed to investigate the hypoglycemic activities and gut microbial regulation effects of polysaccharides from Brasenia schreberi (BS) in diabetic mice induced by high-fat diet and streptozotocin. Our data indicated that BS polysaccharides not only improved the symptoms of hyperglycemia an...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Gaodan, Feng, Simin, Yan, Jiadan, Luan, Di, Sun, Peilong, Shao, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478496/
https://www.ncbi.nlm.nih.gov/pubmed/36119371
http://dx.doi.org/10.1016/j.crfs.2022.09.001
Descripción
Sumario:This study aimed to investigate the hypoglycemic activities and gut microbial regulation effects of polysaccharides from Brasenia schreberi (BS) in diabetic mice induced by high-fat diet and streptozotocin. Our data indicated that BS polysaccharides not only improved the symptoms of hyperglycemia and relieved metabolic endotoxemia-related inflammation but also optimized the gut microbiota composition of diabetic mice with significantly decreased Firmicutes/Bacteroidetes ratios. More importantly, altered gut microbiota components may affect liver glycogen and muscle glycogen by increasing the mRNA expression of phosphatidylinositol-3-kinase (PI3K) and protein kinase B (Akt) in the liver of mice through modulated the abundance of beneficial bacteria (Lactobacillus). Altogether, our findings, for the first time, demonstrate that BS polysaccharides may be used as a beneficial probiotic agent that reverses gut microbiota dysbiosis and the hypoglycemic mechanisms of BS polysaccharides may be related to enhancing the abundance of Lactobacillus to activate PI3K/Akt-mediated signaling pathways in T2DM mice.