Cargando…
Antidiabetic potential of polysaccharides from Brasenia schreberi regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice
This study aimed to investigate the hypoglycemic activities and gut microbial regulation effects of polysaccharides from Brasenia schreberi (BS) in diabetic mice induced by high-fat diet and streptozotocin. Our data indicated that BS polysaccharides not only improved the symptoms of hyperglycemia an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478496/ https://www.ncbi.nlm.nih.gov/pubmed/36119371 http://dx.doi.org/10.1016/j.crfs.2022.09.001 |
Sumario: | This study aimed to investigate the hypoglycemic activities and gut microbial regulation effects of polysaccharides from Brasenia schreberi (BS) in diabetic mice induced by high-fat diet and streptozotocin. Our data indicated that BS polysaccharides not only improved the symptoms of hyperglycemia and relieved metabolic endotoxemia-related inflammation but also optimized the gut microbiota composition of diabetic mice with significantly decreased Firmicutes/Bacteroidetes ratios. More importantly, altered gut microbiota components may affect liver glycogen and muscle glycogen by increasing the mRNA expression of phosphatidylinositol-3-kinase (PI3K) and protein kinase B (Akt) in the liver of mice through modulated the abundance of beneficial bacteria (Lactobacillus). Altogether, our findings, for the first time, demonstrate that BS polysaccharides may be used as a beneficial probiotic agent that reverses gut microbiota dysbiosis and the hypoglycemic mechanisms of BS polysaccharides may be related to enhancing the abundance of Lactobacillus to activate PI3K/Akt-mediated signaling pathways in T2DM mice. |
---|