Cargando…
Location of pedicle screw hold in relation to bone quality and loads
Introduction: Sufficient screw hold is an indispensable requirement for successful spinal fusion, but pedicle screw loosening is a highly prevalent burden. The aim of this study was to quantify the contribution of the pedicle and corpus region in relation to bone quality and loading amplitude of ped...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478651/ https://www.ncbi.nlm.nih.gov/pubmed/36118575 http://dx.doi.org/10.3389/fbioe.2022.953119 |
_version_ | 1784790619226374144 |
---|---|
author | Cornaz, Frédéric Farshad, Mazda Widmer, Jonas |
author_facet | Cornaz, Frédéric Farshad, Mazda Widmer, Jonas |
author_sort | Cornaz, Frédéric |
collection | PubMed |
description | Introduction: Sufficient screw hold is an indispensable requirement for successful spinal fusion, but pedicle screw loosening is a highly prevalent burden. The aim of this study was to quantify the contribution of the pedicle and corpus region in relation to bone quality and loading amplitude of pedicle screws with traditional trajectories. Methods: After CT examination to classify bone quality, 14 pedicle screws were inserted into seven L5. Subsequently, Micro-CT images were acquired to analyze the screw’s location and the vertebrae were split in the midsagittal plane and horizontally along the screw’s axis to allow imprint tests with 6 mm long sections of the pedicle screws in a caudal direction perpendicular to the screw’s surface. Force-displacement curves in combination with the micro-CT data were used to reconstruct the resistance of the pedicle and corpus region at different loading amplitudes. Results: Bone quality was classified as normal in three specimens, as moderate in two and as bad in two specimens, resulting in six, four, and four pedicle screws per group. The screw length in the pedicle region in relation to the inserted screw length was measured at an average of 63%, 62%, and 52% for the three groups, respectively. At a calculated 100 N axial load acting on the whole pedicle screw, the pedicle region contributed an average of 55%, 58%, and 58% resistance for the normal, moderate, and bad bone quality specimens, respectively. With 500 N load, these values were measured at 59%, 63%, and 73% and with 1000 N load, they were quantified at 71%, 75%, and 81%. Conclusion: At lower loading amplitudes, the contribution of the pedicle and corpus region on pedicle screw hold are largely balanced and independent of bone quality. With increasing loading amplitudes, the contribution of the pedicle region increases disproportionally, and this increase is even more pronounced in situations with reduced bone quality. These results demonstrate the importance of the pedicle region for screw hold, especially for reduced bone quality. |
format | Online Article Text |
id | pubmed-9478651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94786512022-09-17 Location of pedicle screw hold in relation to bone quality and loads Cornaz, Frédéric Farshad, Mazda Widmer, Jonas Front Bioeng Biotechnol Bioengineering and Biotechnology Introduction: Sufficient screw hold is an indispensable requirement for successful spinal fusion, but pedicle screw loosening is a highly prevalent burden. The aim of this study was to quantify the contribution of the pedicle and corpus region in relation to bone quality and loading amplitude of pedicle screws with traditional trajectories. Methods: After CT examination to classify bone quality, 14 pedicle screws were inserted into seven L5. Subsequently, Micro-CT images were acquired to analyze the screw’s location and the vertebrae were split in the midsagittal plane and horizontally along the screw’s axis to allow imprint tests with 6 mm long sections of the pedicle screws in a caudal direction perpendicular to the screw’s surface. Force-displacement curves in combination with the micro-CT data were used to reconstruct the resistance of the pedicle and corpus region at different loading amplitudes. Results: Bone quality was classified as normal in three specimens, as moderate in two and as bad in two specimens, resulting in six, four, and four pedicle screws per group. The screw length in the pedicle region in relation to the inserted screw length was measured at an average of 63%, 62%, and 52% for the three groups, respectively. At a calculated 100 N axial load acting on the whole pedicle screw, the pedicle region contributed an average of 55%, 58%, and 58% resistance for the normal, moderate, and bad bone quality specimens, respectively. With 500 N load, these values were measured at 59%, 63%, and 73% and with 1000 N load, they were quantified at 71%, 75%, and 81%. Conclusion: At lower loading amplitudes, the contribution of the pedicle and corpus region on pedicle screw hold are largely balanced and independent of bone quality. With increasing loading amplitudes, the contribution of the pedicle region increases disproportionally, and this increase is even more pronounced in situations with reduced bone quality. These results demonstrate the importance of the pedicle region for screw hold, especially for reduced bone quality. Frontiers Media S.A. 2022-09-02 /pmc/articles/PMC9478651/ /pubmed/36118575 http://dx.doi.org/10.3389/fbioe.2022.953119 Text en Copyright © 2022 Cornaz, Farshad and Widmer. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Cornaz, Frédéric Farshad, Mazda Widmer, Jonas Location of pedicle screw hold in relation to bone quality and loads |
title | Location of pedicle screw hold in relation to bone quality and loads |
title_full | Location of pedicle screw hold in relation to bone quality and loads |
title_fullStr | Location of pedicle screw hold in relation to bone quality and loads |
title_full_unstemmed | Location of pedicle screw hold in relation to bone quality and loads |
title_short | Location of pedicle screw hold in relation to bone quality and loads |
title_sort | location of pedicle screw hold in relation to bone quality and loads |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478651/ https://www.ncbi.nlm.nih.gov/pubmed/36118575 http://dx.doi.org/10.3389/fbioe.2022.953119 |
work_keys_str_mv | AT cornazfrederic locationofpediclescrewholdinrelationtobonequalityandloads AT farshadmazda locationofpediclescrewholdinrelationtobonequalityandloads AT widmerjonas locationofpediclescrewholdinrelationtobonequalityandloads |