Cargando…
A novel silent speech recognition approach based on parallel inception convolutional neural network and Mel frequency spectral coefficient
Silent speech recognition breaks the limitations of automatic speech recognition when acoustic signals cannot be produced or captured clearly, but still has a long way to go before being ready for any real-life applications. To address this issue, we propose a novel silent speech recognition framewo...
Autores principales: | Wu, Jinghan, Zhang, Yakun, Xie, Liang, Yan, Ye, Zhang, Xu, Liu, Shuang, An, Xingwei, Yin, Erwei, Ming, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478652/ https://www.ncbi.nlm.nih.gov/pubmed/36119717 http://dx.doi.org/10.3389/fnbot.2022.971446 |
Ejemplares similares
-
The application of fractional Mel cepstral coefficient in deceptive speech detection
por: Pan, Xinyu, et al.
Publicado: (2015) -
Heart sound classification based on improved mel-frequency spectral coefficients and deep residual learning
por: Li, Feng, et al.
Publicado: (2022) -
Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network
por: Zhou, Quan, et al.
Publicado: (2021) -
Machine learning approach for detecting Covid-19 from speech signal using Mel frequency magnitude coefficient
por: Nayak, Sudhansu Sekhar, et al.
Publicado: (2023) -
Fusion-ConvBERT: Parallel Convolution and BERT Fusion for Speech Emotion Recognition
por: Lee, Sanghyun, et al.
Publicado: (2020)