Cargando…
An online human–robot collaborative grinding state recognition approach based on contact dynamics and LSTM
Collaborative state recognition is a critical issue for physical human–robot collaboration (PHRC). This paper proposes a contact dynamics-based state recognition method to identify the human–robot collaborative grinding state. The main idea of the proposed approach is to distinguish between the huma...
Autores principales: | Chen, Shouyan, Sun, Xinqi, Zhao, Zhijia, Xiao, Meng, Zou, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478666/ https://www.ncbi.nlm.nih.gov/pubmed/36119715 http://dx.doi.org/10.3389/fnbot.2022.971205 |
Ejemplares similares
-
The Impact of Attention Mechanisms on Speech Emotion Recognition
por: Chen, Shouyan, et al.
Publicado: (2021) -
Emotion Recognition Based on Dynamic Energy Features Using a Bi-LSTM Network
por: Zhu, Meili, et al.
Publicado: (2022) -
Device for Contact Measurement of Turbine Blade Geometry in Robotic Grinding Process
por: Szybicki, Dariusz, et al.
Publicado: (2020) -
Dynamic Gesture Recognition Model Based on Millimeter-Wave Radar With ResNet-18 and LSTM
por: Zhang, Yongqiang, et al.
Publicado: (2022) -
A touch-free human-robot collaborative surgical navigation robotic system based on hand gesture recognition
por: Wang, Jie, et al.
Publicado: (2023)