Cargando…

Systematic analysis and comparison of O-glycosylation of five recombinant spike proteins in β-coronaviruses

β-coronaviruses (β-CoVs), representative with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), depend on their highly glycosylated spike proteins to mediate cell entry and membrane fusion. Compared with the extensively identified N-glycosylation, less is known about O-glycosylation of β...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Xuefang, Li, Xiuling, Chen, Cheng, Zhang, Xiaofei, Liang, Xinmiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478876/
https://www.ncbi.nlm.nih.gov/pubmed/36192065
http://dx.doi.org/10.1016/j.aca.2022.340394
Descripción
Sumario:β-coronaviruses (β-CoVs), representative with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), depend on their highly glycosylated spike proteins to mediate cell entry and membrane fusion. Compared with the extensively identified N-glycosylation, less is known about O-glycosylation of β-CoVs S proteins, let alone its biological functions. Herein we comprehensively characterized O-glycosylation of five recombinant β-CoVs S1 subunits and revealed the macro- and micro-heterogeneity nature of site-specific O-glycosylation. We also uncovered the O-glycosylation differences between SARS-CoV-2 and its natural D614G mutant on functional domains. This work describes the systematic O-glycosylation analysis of β-CoVs S1 proteins and will help to guide the related vaccines and antiviral drugs development.