Cargando…
Systematic analysis and comparison of O-glycosylation of five recombinant spike proteins in β-coronaviruses
β-coronaviruses (β-CoVs), representative with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), depend on their highly glycosylated spike proteins to mediate cell entry and membrane fusion. Compared with the extensively identified N-glycosylation, less is known about O-glycosylation of β...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478876/ https://www.ncbi.nlm.nih.gov/pubmed/36192065 http://dx.doi.org/10.1016/j.aca.2022.340394 |
Sumario: | β-coronaviruses (β-CoVs), representative with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), depend on their highly glycosylated spike proteins to mediate cell entry and membrane fusion. Compared with the extensively identified N-glycosylation, less is known about O-glycosylation of β-CoVs S proteins, let alone its biological functions. Herein we comprehensively characterized O-glycosylation of five recombinant β-CoVs S1 subunits and revealed the macro- and micro-heterogeneity nature of site-specific O-glycosylation. We also uncovered the O-glycosylation differences between SARS-CoV-2 and its natural D614G mutant on functional domains. This work describes the systematic O-glycosylation analysis of β-CoVs S1 proteins and will help to guide the related vaccines and antiviral drugs development. |
---|