Cargando…
Multimodality system of x-ray and fluorescence based on Fourier single-pixel imaging for small animals
SIGNIFICANCE: The multimodality imaging system has become a powerful tool for in-vivo biomedical research. However, a conventional multimodality system generally employs two independent detectors, which is costly and bulky. Meanwhile, the geometric cocalibration and image registration between the im...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478903/ https://www.ncbi.nlm.nih.gov/pubmed/36114605 http://dx.doi.org/10.1117/1.JBO.27.9.090501 |
Sumario: | SIGNIFICANCE: The multimodality imaging system has become a powerful tool for in-vivo biomedical research. However, a conventional multimodality system generally employs two independent detectors, which is costly and bulky. Meanwhile, the geometric cocalibration and image registration between the imaging modalities are also complicated. AIM: To acquire the multimodality images for small animals with only one visible light sensed single-pixel detector. APPROACH: The system is built based on a structured detection Fourier single-pixel imaging architecture. A cesium iodide doped with thallium [CsI(Tl)] scintillator plate is placed behind the sample in x-ray imaging, so the x-ray images can be converted to be visible and sensed with the same single-pixel detector as applied in fluorescence imaging. RESULTS: The spatial resolution of x-ray imaging was measured to be 1.81 mm, the sensitivity and the imaging depth of fluorescence imaging was evaluated to be [Formula: see text] and 4 mm, respectively. In vivo multimodality imaging of a C57BL/6 female mouse bearing tumor targeted with mCherry was carried out. CONCLUSIONS: We proposed an x-ray and fluorescence multimodality imaging system for small animals via the structured detection FSI architecture. The system is low cost, with a more compact structure, and free of image registration from different modalities. In vivo multimodality imaging results of a mouse bearing tumor demonstrate its capability for small animal research. |
---|