Cargando…
Acetic Acid Enables Precise Tailoring of the Mechanical Behavior of Protein-Based Hydrogels
[Image: see text] Engineering viscoelastic and biocompatible materials with tailored mechanical and microstructure properties capable of mimicking the biological stiffness (<17 kPa) or serving as bioimplants will bring protein-based hydrogels to the forefront in the biomaterials field. Here, we i...
Autores principales: | Slawinski, Marina, Kaeek, Maria, Rajmiel, Yair, Khoury, Luai R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479135/ https://www.ncbi.nlm.nih.gov/pubmed/36018622 http://dx.doi.org/10.1021/acs.nanolett.2c01558 |
Ejemplares similares
-
Cation-induced shape programming and morphing in protein-based hydrogels
por: Khoury, Luai R., et al.
Publicado: (2020) -
Chemical unfolding of protein domains induces shape change in programmed protein hydrogels
por: Khoury, Luai R., et al.
Publicado: (2019) -
Tailoring the Swelling‐Shrinkable Behavior of Hydrogels for Biomedical Applications
por: Feng, Wenjun, et al.
Publicado: (2023) -
Bisphosphonic Acid-Functionalized Cross-Linkers to
Tailor Hydrogel Properties for Biomedical Applications
por: Guven, Melek N., et al.
Publicado: (2018) -
Molecular Recognition of the Self-Assembly Mechanism
of Glycosyl Amino Acetate-Based Hydrogels
por: Zhou, Yi, et al.
Publicado: (2021)