Cargando…

Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr(3)-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy

[Image: see text] The optimized exploitation of perovskite nanocrystals and nanoplatelets as highly efficient light sources requires a detailed understanding of the energy spacing within the exciton manifold. Dark exciton states are particularly relevant because they represent a channel that reduces...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shuli, Dyksik, Mateusz, Lampe, Carola, Gramlich, Moritz, Maude, Duncan K., Baranowski, Michał, Urban, Alexander S., Plochocka, Paulina, Surrente, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479212/
https://www.ncbi.nlm.nih.gov/pubmed/36036573
http://dx.doi.org/10.1021/acs.nanolett.2c01826
_version_ 1784790737937760256
author Wang, Shuli
Dyksik, Mateusz
Lampe, Carola
Gramlich, Moritz
Maude, Duncan K.
Baranowski, Michał
Urban, Alexander S.
Plochocka, Paulina
Surrente, Alessandro
author_facet Wang, Shuli
Dyksik, Mateusz
Lampe, Carola
Gramlich, Moritz
Maude, Duncan K.
Baranowski, Michał
Urban, Alexander S.
Plochocka, Paulina
Surrente, Alessandro
author_sort Wang, Shuli
collection PubMed
description [Image: see text] The optimized exploitation of perovskite nanocrystals and nanoplatelets as highly efficient light sources requires a detailed understanding of the energy spacing within the exciton manifold. Dark exciton states are particularly relevant because they represent a channel that reduces radiative efficiency. Here, we apply large in-plane magnetic fields to brighten optically inactive states of CsPbBr(3)-based nanoplatelets for the first time. This approach allows us to access the dark states and directly determine the dark-bright splitting, which reaches 22 meV for the thinnest nanoplatelets. The splitting is significantly less for thicker nanoplatelets due to reduced exciton confinement. Additionally, the form of the magneto-PL spectrum suggests that dark and bright state populations are nonthermalized, which is indicative of a phonon bottleneck in the exciton relaxation process.
format Online
Article
Text
id pubmed-9479212
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-94792122022-09-17 Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr(3)-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy Wang, Shuli Dyksik, Mateusz Lampe, Carola Gramlich, Moritz Maude, Duncan K. Baranowski, Michał Urban, Alexander S. Plochocka, Paulina Surrente, Alessandro Nano Lett [Image: see text] The optimized exploitation of perovskite nanocrystals and nanoplatelets as highly efficient light sources requires a detailed understanding of the energy spacing within the exciton manifold. Dark exciton states are particularly relevant because they represent a channel that reduces radiative efficiency. Here, we apply large in-plane magnetic fields to brighten optically inactive states of CsPbBr(3)-based nanoplatelets for the first time. This approach allows us to access the dark states and directly determine the dark-bright splitting, which reaches 22 meV for the thinnest nanoplatelets. The splitting is significantly less for thicker nanoplatelets due to reduced exciton confinement. Additionally, the form of the magneto-PL spectrum suggests that dark and bright state populations are nonthermalized, which is indicative of a phonon bottleneck in the exciton relaxation process. American Chemical Society 2022-08-29 2022-09-14 /pmc/articles/PMC9479212/ /pubmed/36036573 http://dx.doi.org/10.1021/acs.nanolett.2c01826 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Wang, Shuli
Dyksik, Mateusz
Lampe, Carola
Gramlich, Moritz
Maude, Duncan K.
Baranowski, Michał
Urban, Alexander S.
Plochocka, Paulina
Surrente, Alessandro
Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr(3)-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy
title Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr(3)-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy
title_full Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr(3)-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy
title_fullStr Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr(3)-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy
title_full_unstemmed Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr(3)-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy
title_short Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr(3)-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy
title_sort thickness-dependent dark-bright exciton splitting and phonon bottleneck in cspbbr(3)-based nanoplatelets revealed via magneto-optical spectroscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479212/
https://www.ncbi.nlm.nih.gov/pubmed/36036573
http://dx.doi.org/10.1021/acs.nanolett.2c01826
work_keys_str_mv AT wangshuli thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy
AT dyksikmateusz thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy
AT lampecarola thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy
AT gramlichmoritz thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy
AT maudeduncank thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy
AT baranowskimichał thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy
AT urbanalexanders thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy
AT plochockapaulina thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy
AT surrentealessandro thicknessdependentdarkbrightexcitonsplittingandphononbottleneckincspbbr3basednanoplateletsrevealedviamagnetoopticalspectroscopy