Cargando…

Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots

[Image: see text] PbTe is a semiconductor with promising properties for topological quantum computing applications. Here, we characterize electron quantum dots in PbTe nanowires selectively grown on InP. Charge stability diagrams at zero magnetic field reveal large even–odd spacing between Coulomb b...

Descripción completa

Detalles Bibliográficos
Autores principales: ten Kate, Sofieke C., Ritter, Markus F., Fuhrer, Andreas, Jung, Jason, Schellingerhout, Sander G., Bakkers, Erik P. A. M., Riel, Heike, Nichele, Fabrizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479220/
https://www.ncbi.nlm.nih.gov/pubmed/35998346
http://dx.doi.org/10.1021/acs.nanolett.2c01943
_version_ 1784790739904888832
author ten Kate, Sofieke C.
Ritter, Markus F.
Fuhrer, Andreas
Jung, Jason
Schellingerhout, Sander G.
Bakkers, Erik P. A. M.
Riel, Heike
Nichele, Fabrizio
author_facet ten Kate, Sofieke C.
Ritter, Markus F.
Fuhrer, Andreas
Jung, Jason
Schellingerhout, Sander G.
Bakkers, Erik P. A. M.
Riel, Heike
Nichele, Fabrizio
author_sort ten Kate, Sofieke C.
collection PubMed
description [Image: see text] PbTe is a semiconductor with promising properties for topological quantum computing applications. Here, we characterize electron quantum dots in PbTe nanowires selectively grown on InP. Charge stability diagrams at zero magnetic field reveal large even–odd spacing between Coulomb blockade peaks, charging energies below 140 μeV and Kondo peaks in odd Coulomb diamonds. We attribute the large even–odd spacing to the large dielectric constant and small effective electron mass of PbTe. By studying the Zeeman-induced level and Kondo splitting in finite magnetic fields, we extract the electron g-factor as a function of magnetic field direction. We find the g-factor tensor to be highly anisotropic with principal g-factors ranging from 0.9 to 22.4 and to depend on the electronic configuration of the devices. These results indicate strong Rashba spin–orbit interaction in our PbTe quantum dots.
format Online
Article
Text
id pubmed-9479220
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-94792202022-09-17 Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots ten Kate, Sofieke C. Ritter, Markus F. Fuhrer, Andreas Jung, Jason Schellingerhout, Sander G. Bakkers, Erik P. A. M. Riel, Heike Nichele, Fabrizio Nano Lett [Image: see text] PbTe is a semiconductor with promising properties for topological quantum computing applications. Here, we characterize electron quantum dots in PbTe nanowires selectively grown on InP. Charge stability diagrams at zero magnetic field reveal large even–odd spacing between Coulomb blockade peaks, charging energies below 140 μeV and Kondo peaks in odd Coulomb diamonds. We attribute the large even–odd spacing to the large dielectric constant and small effective electron mass of PbTe. By studying the Zeeman-induced level and Kondo splitting in finite magnetic fields, we extract the electron g-factor as a function of magnetic field direction. We find the g-factor tensor to be highly anisotropic with principal g-factors ranging from 0.9 to 22.4 and to depend on the electronic configuration of the devices. These results indicate strong Rashba spin–orbit interaction in our PbTe quantum dots. American Chemical Society 2022-08-23 2022-09-14 /pmc/articles/PMC9479220/ /pubmed/35998346 http://dx.doi.org/10.1021/acs.nanolett.2c01943 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle ten Kate, Sofieke C.
Ritter, Markus F.
Fuhrer, Andreas
Jung, Jason
Schellingerhout, Sander G.
Bakkers, Erik P. A. M.
Riel, Heike
Nichele, Fabrizio
Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots
title Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots
title_full Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots
title_fullStr Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots
title_full_unstemmed Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots
title_short Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots
title_sort small charging energies and g-factor anisotropy in pbte quantum dots
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479220/
https://www.ncbi.nlm.nih.gov/pubmed/35998346
http://dx.doi.org/10.1021/acs.nanolett.2c01943
work_keys_str_mv AT tenkatesofiekec smallchargingenergiesandgfactoranisotropyinpbtequantumdots
AT rittermarkusf smallchargingenergiesandgfactoranisotropyinpbtequantumdots
AT fuhrerandreas smallchargingenergiesandgfactoranisotropyinpbtequantumdots
AT jungjason smallchargingenergiesandgfactoranisotropyinpbtequantumdots
AT schellingerhoutsanderg smallchargingenergiesandgfactoranisotropyinpbtequantumdots
AT bakkerserikpam smallchargingenergiesandgfactoranisotropyinpbtequantumdots
AT rielheike smallchargingenergiesandgfactoranisotropyinpbtequantumdots
AT nichelefabrizio smallchargingenergiesandgfactoranisotropyinpbtequantumdots