Cargando…
Prediction of prognosis and survival of patients with gastric cancer by a weighted improved random forest model: an application of machine learning in medicine
INTRODUCTION: It is essential to predict the survival status of patients based on their prognosis. This can assist physicians in evaluating treatment decisions. Random forest is an excellent machine learning algorithm even without any modification. We propose a new random forest weighting method and...
Autores principales: | Xu, Cheng, Wang, Jing, Zheng, Tianlong, Cao, Yue, Ye, Fan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479734/ https://www.ncbi.nlm.nih.gov/pubmed/36160349 http://dx.doi.org/10.5114/aoms/135594 |
Ejemplares similares
-
Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest)
por: Zhang, Luming, et al.
Publicado: (2022) -
Harnessing Machine Learning in Vocal Arts Medicine: A Random Forest Application for “Fach” Classification in Opera
por: Wang, Zehui, et al.
Publicado: (2023) -
A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping
por: Mascaro, Joseph, et al.
Publicado: (2014) -
Prognostic Factors for Survival in Patients with Gastric Cancer using a Random Survival Forest
por: Adham, Davoud, et al.
Publicado: (2017) -
Conservation machine learning: a case study of random forests
por: Sipper, Moshe, et al.
Publicado: (2021)