Cargando…
Optimizing prediction of response to antidepressant medications using machine learning and environmental data
INTRODUCTION: Major depressive disorder (MDD) is complex and multifactorial, posing a major challenge of tailoring the optimal medication for each patient. Current practice for MDD treatment mainly relies on trial-and-error, with estimated 42%-53% response rates for antidepressant use. OBJECTIVES: W...
Autores principales: | Spinrad, A., Darki-Morag, S., Taliaz, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9480190/ http://dx.doi.org/10.1192/j.eurpsy.2021.2000 |
Ejemplares similares
-
Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data
por: Taliaz, Dekel, et al.
Publicado: (2021) -
Predicting the effect of antidepressant treatment on relief from anxiety symptoms
por: Spinrad, A., et al.
Publicado: (2022) -
Leveraging Machine Learning Approaches for Predicting Antidepressant Treatment Response Using Electroencephalography (EEG) and Clinical Data
por: Jaworska, Natalia, et al.
Publicado: (2019) -
Combining machine learning algorithms for prediction of antidepressant treatment response
por: Kautzky, Alexander, et al.
Publicado: (2020) -
Prediction of Antidepressant Treatment Response and Remission Using an Ensemble Machine Learning Framework
por: Lin, Eugene, et al.
Publicado: (2020)