Cargando…

An improved multipath video data communication in a vehicular delay-tolerant network

A vehicular network offers diverse beneficial services related to video streaming in different types of setups, including rural and urban. Some of the recent issues in vehicular communication include prospect of leveraging machine learning and blockchain for privacy and security enhancement, and res...

Descripción completa

Detalles Bibliográficos
Autor principal: Almotairi, Khaled H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9480984/
https://www.ncbi.nlm.nih.gov/pubmed/36112644
http://dx.doi.org/10.1371/journal.pone.0273751
_version_ 1784791160488722432
author Almotairi, Khaled H.
author_facet Almotairi, Khaled H.
author_sort Almotairi, Khaled H.
collection PubMed
description A vehicular network offers diverse beneficial services related to video streaming in different types of setups, including rural and urban. Some of the recent issues in vehicular communication include prospect of leveraging machine learning and blockchain for privacy and security enhancement, and resource allocation for video streaming coupled with integration of 6G networks for high data rate. Considering the extreme mobility and dynamic structure of vehicular networks and the high data rates of video streams, a unitary route may not support the required quality of a video stream. To achieve load balancing, connectivity among vehicles, path diversity, and low delay, the multipath transmission with a delay-tolerant network (DTN) concept based on a node disjoint algorithm is considered. In this proposed study, video frames are categorized in accordance with priority and forwarded via two graded paths. The first path carries the video reference frame, which is the most important frame for video decoding. The second path carries neighboring frames during video transmission. For the efficient selection of an optimal relay vehicle, a communication cost function is introduced into the existing DTN. This communication cost function is based on three key enhancement parameters: link stability rate, accessible bandwidth estimation, and transmission delay. The improvement in this study, is the integration of store-carry-forward strategy to the existing multipath data forwarding strategy. On the basis of the simulation outcomes, the proposed multipath video data communication in a vehicular DTN (MVDTN) scheme can enhance video data delivery in terms of packet loss ratio, end-to-end delay, structural similarity index measure, and peak signal-to-noise ratio. Considering the aforementioned metrics, our proposed schemes outperform the baseline schemes, namely, road-based multi-metrics forwarder selection evaluation for multipath video streaming and quality of service-aware multipath video streaming for an urban vehicular ad hoc network by using ant colony optimization.
format Online
Article
Text
id pubmed-9480984
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-94809842022-09-17 An improved multipath video data communication in a vehicular delay-tolerant network Almotairi, Khaled H. PLoS One Research Article A vehicular network offers diverse beneficial services related to video streaming in different types of setups, including rural and urban. Some of the recent issues in vehicular communication include prospect of leveraging machine learning and blockchain for privacy and security enhancement, and resource allocation for video streaming coupled with integration of 6G networks for high data rate. Considering the extreme mobility and dynamic structure of vehicular networks and the high data rates of video streams, a unitary route may not support the required quality of a video stream. To achieve load balancing, connectivity among vehicles, path diversity, and low delay, the multipath transmission with a delay-tolerant network (DTN) concept based on a node disjoint algorithm is considered. In this proposed study, video frames are categorized in accordance with priority and forwarded via two graded paths. The first path carries the video reference frame, which is the most important frame for video decoding. The second path carries neighboring frames during video transmission. For the efficient selection of an optimal relay vehicle, a communication cost function is introduced into the existing DTN. This communication cost function is based on three key enhancement parameters: link stability rate, accessible bandwidth estimation, and transmission delay. The improvement in this study, is the integration of store-carry-forward strategy to the existing multipath data forwarding strategy. On the basis of the simulation outcomes, the proposed multipath video data communication in a vehicular DTN (MVDTN) scheme can enhance video data delivery in terms of packet loss ratio, end-to-end delay, structural similarity index measure, and peak signal-to-noise ratio. Considering the aforementioned metrics, our proposed schemes outperform the baseline schemes, namely, road-based multi-metrics forwarder selection evaluation for multipath video streaming and quality of service-aware multipath video streaming for an urban vehicular ad hoc network by using ant colony optimization. Public Library of Science 2022-09-16 /pmc/articles/PMC9480984/ /pubmed/36112644 http://dx.doi.org/10.1371/journal.pone.0273751 Text en © 2022 Khaled H. Almotairi https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Almotairi, Khaled H.
An improved multipath video data communication in a vehicular delay-tolerant network
title An improved multipath video data communication in a vehicular delay-tolerant network
title_full An improved multipath video data communication in a vehicular delay-tolerant network
title_fullStr An improved multipath video data communication in a vehicular delay-tolerant network
title_full_unstemmed An improved multipath video data communication in a vehicular delay-tolerant network
title_short An improved multipath video data communication in a vehicular delay-tolerant network
title_sort improved multipath video data communication in a vehicular delay-tolerant network
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9480984/
https://www.ncbi.nlm.nih.gov/pubmed/36112644
http://dx.doi.org/10.1371/journal.pone.0273751
work_keys_str_mv AT almotairikhaledh animprovedmultipathvideodatacommunicationinavehiculardelaytolerantnetwork
AT almotairikhaledh improvedmultipathvideodatacommunicationinavehiculardelaytolerantnetwork