Cargando…
Applications of Machine Learning to Improve the Clinical Viability of Compton Camera Based in vivo Range Verification in Proton Radiotherapy
We studied the application of a deep, fully connected Neural Network (NN) to process prompt gamma (PG) data measured by a Compton camera (CC) during the delivery of clinical proton radiotherapy beams. The network identifies 1) recorded “bad” PG events arising from background noise during the measure...
Autores principales: | Polf, Jerimy C., Barajas, Carlos A., Peterson, Stephen W., Mackin, Dennis S., Beddar, Sam, Ren, Lei, Gobbert, Matthias K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481064/ https://www.ncbi.nlm.nih.gov/pubmed/36119562 http://dx.doi.org/10.3389/fphy.2022.838273 |
Ejemplares similares
-
Comparison of reconstructed prompt gamma emissions using maximum likelihood estimation and origin ensemble algorithms for a Compton camera system tailored to proton range monitoring
por: Valencia Lozano, Ingrid, et al.
Publicado: (2022) -
Proton range verification with MACACO II Compton camera enhanced by a neural network for event selection
por: Muñoz, Enrique, et al.
Publicado: (2021) -
Proton dose perturbations caused by high‐voltage leads from implanted cardioverter defibrillators
por: Wootton, Landon S., et al.
Publicado: (2012) -
Author Correction: Proton range verification with MACACO II Compton camera enhanced by a neural network for event selection
por: Muñoz, Enrique, et al.
Publicado: (2021) -
Noise evaluation of Compton camera imaging for proton therapy
por: Ortega, P G, et al.
Publicado: (2015)