Cargando…

Architectures and complex functions of tandem riboswitches

Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple ribo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sherlock, Madeline E., Higgs, Gadareth, Yu, Diane, Widner, Danielle L., White, Neil A., Sudarsan, Narasimhan, Sadeeshkumar, Harini, Perkins, Kevin R., Mirihana Arachchilage, Gayan, Malkowski, Sarah N., King, Christopher G., Harris, Kimberly A., Gaffield, Glenn, Atilho, Ruben M., Breaker, Ronald R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481103/
https://www.ncbi.nlm.nih.gov/pubmed/36093908
http://dx.doi.org/10.1080/15476286.2022.2119017
_version_ 1784791188206780416
author Sherlock, Madeline E.
Higgs, Gadareth
Yu, Diane
Widner, Danielle L.
White, Neil A.
Sudarsan, Narasimhan
Sadeeshkumar, Harini
Perkins, Kevin R.
Mirihana Arachchilage, Gayan
Malkowski, Sarah N.
King, Christopher G.
Harris, Kimberly A.
Gaffield, Glenn
Atilho, Ruben M.
Breaker, Ronald R.
author_facet Sherlock, Madeline E.
Higgs, Gadareth
Yu, Diane
Widner, Danielle L.
White, Neil A.
Sudarsan, Narasimhan
Sadeeshkumar, Harini
Perkins, Kevin R.
Mirihana Arachchilage, Gayan
Malkowski, Sarah N.
King, Christopher G.
Harris, Kimberly A.
Gaffield, Glenn
Atilho, Ruben M.
Breaker, Ronald R.
author_sort Sherlock, Madeline E.
collection PubMed
description Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more ‘digital’ gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.
format Online
Article
Text
id pubmed-9481103
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-94811032022-09-17 Architectures and complex functions of tandem riboswitches Sherlock, Madeline E. Higgs, Gadareth Yu, Diane Widner, Danielle L. White, Neil A. Sudarsan, Narasimhan Sadeeshkumar, Harini Perkins, Kevin R. Mirihana Arachchilage, Gayan Malkowski, Sarah N. King, Christopher G. Harris, Kimberly A. Gaffield, Glenn Atilho, Ruben M. Breaker, Ronald R. RNA Biol Research Paper Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more ‘digital’ gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA. Taylor & Francis 2022-09-11 /pmc/articles/PMC9481103/ /pubmed/36093908 http://dx.doi.org/10.1080/15476286.2022.2119017 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Paper
Sherlock, Madeline E.
Higgs, Gadareth
Yu, Diane
Widner, Danielle L.
White, Neil A.
Sudarsan, Narasimhan
Sadeeshkumar, Harini
Perkins, Kevin R.
Mirihana Arachchilage, Gayan
Malkowski, Sarah N.
King, Christopher G.
Harris, Kimberly A.
Gaffield, Glenn
Atilho, Ruben M.
Breaker, Ronald R.
Architectures and complex functions of tandem riboswitches
title Architectures and complex functions of tandem riboswitches
title_full Architectures and complex functions of tandem riboswitches
title_fullStr Architectures and complex functions of tandem riboswitches
title_full_unstemmed Architectures and complex functions of tandem riboswitches
title_short Architectures and complex functions of tandem riboswitches
title_sort architectures and complex functions of tandem riboswitches
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481103/
https://www.ncbi.nlm.nih.gov/pubmed/36093908
http://dx.doi.org/10.1080/15476286.2022.2119017
work_keys_str_mv AT sherlockmadelinee architecturesandcomplexfunctionsoftandemriboswitches
AT higgsgadareth architecturesandcomplexfunctionsoftandemriboswitches
AT yudiane architecturesandcomplexfunctionsoftandemriboswitches
AT widnerdaniellel architecturesandcomplexfunctionsoftandemriboswitches
AT whiteneila architecturesandcomplexfunctionsoftandemriboswitches
AT sudarsannarasimhan architecturesandcomplexfunctionsoftandemriboswitches
AT sadeeshkumarharini architecturesandcomplexfunctionsoftandemriboswitches
AT perkinskevinr architecturesandcomplexfunctionsoftandemriboswitches
AT mirihanaarachchilagegayan architecturesandcomplexfunctionsoftandemriboswitches
AT malkowskisarahn architecturesandcomplexfunctionsoftandemriboswitches
AT kingchristopherg architecturesandcomplexfunctionsoftandemriboswitches
AT harriskimberlya architecturesandcomplexfunctionsoftandemriboswitches
AT gaffieldglenn architecturesandcomplexfunctionsoftandemriboswitches
AT atilhorubenm architecturesandcomplexfunctionsoftandemriboswitches
AT breakerronaldr architecturesandcomplexfunctionsoftandemriboswitches