Cargando…
Deep learning reveals predictive sequence concepts within immune repertoires to immunotherapy
T cell receptor (TCR) sequencing has been used to characterize the immune response to cancer. However, most analyses have been restricted to quantitative measures such as clonality that do not leverage the complementarity-determining region 3 (CDR3) sequence. We use DeepTCR, a framework of deep lear...
Autores principales: | Sidhom, John-William, Oliveira, Giacomo, Ross-MacDonald, Petra, Wind-Rotolo, Megan, Wu, Catherine J., Pardoll, Drew M., Baras, Alexander S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481116/ https://www.ncbi.nlm.nih.gov/pubmed/36112691 http://dx.doi.org/10.1126/sciadv.abq5089 |
Ejemplares similares
-
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: Sidhom, John-William, et al.
Publicado: (2021) -
Author Correction: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: Sidhom, John-William, et al.
Publicado: (2021) -
Deep learning identifies antigenic determinants of severe SARS-CoV-2 infection within T-cell repertoires
por: Sidhom, John-William, et al.
Publicado: (2021) -
Broad responses to chemical adducts shape the natural antibody repertoire in early infancy
por: Mashiko, Shunya, et al.
Publicado: (2023) -
Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies
por: Hanke, Leo, et al.
Publicado: (2022)