Cargando…
A flexible electronic strain sensor for the real-time monitoring of tumor regression
Assessing the efficacy of cancer therapeutics in mouse models is a critical step in treatment development. However, low-resolution measurement tools and small sample sizes make determining drug efficacy in vivo a difficult and time-intensive task. Here, we present a commercially scalable wearable el...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481124/ https://www.ncbi.nlm.nih.gov/pubmed/36112679 http://dx.doi.org/10.1126/sciadv.abn6550 |
Sumario: | Assessing the efficacy of cancer therapeutics in mouse models is a critical step in treatment development. However, low-resolution measurement tools and small sample sizes make determining drug efficacy in vivo a difficult and time-intensive task. Here, we present a commercially scalable wearable electronic strain sensor that automates the in vivo testing of cancer therapeutics by continuously monitoring the micrometer-scale progression or regression of subcutaneously implanted tumors at the minute time scale. In two in vivo cancer mouse models, our sensor discerned differences in tumor volume dynamics between drug- and vehicle-treated tumors within 5 hours following therapy initiation. These short-term regression measurements were validated through histology, and caliper and bioluminescence measurements taken over weeklong treatment periods demonstrated the correlation with longer-term treatment response. We anticipate that real-time tumor regression datasets could help expedite and automate the process of screening cancer therapies in vivo. |
---|