Cargando…
Probing the rules of cell coordination in live tissues by interpretable machine learning based on graph neural networks
Robustness in developing and homeostatic tissues is supported by various types of spatiotemporal cell-to-cell interactions. Although live imaging and cell tracking are powerful in providing direct evidence of cell coordination rules, extracting and comparing these rules across many tissues with pote...
Autores principales: | Yamamoto, Takaki, Cockburn, Katie, Greco, Valentina, Kawaguchi, Kyogo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481156/ https://www.ncbi.nlm.nih.gov/pubmed/36067226 http://dx.doi.org/10.1371/journal.pcbi.1010477 |
Ejemplares similares
-
Tissue-scale coordination of cellular behavior promotes epidermal wound repair in live mice
por: Park, Sangbum, et al.
Publicado: (2017) -
Gradual differentiation uncoupled from cell cycle exit generates heterogeneity in the epidermal stem cell layer
por: Cockburn, Katie, et al.
Publicado: (2022) -
Graph rules for recurrent neural network dynamics: extended version
por: Curto, Carina, et al.
Publicado: (2023) -
The interpretation of graphs in physics
por: MacPherson, I S, et al.
Publicado: (1974) -
Neural representations of cryo-EM maps and a graph-based interpretation
por: Ranno, Nathan, et al.
Publicado: (2022)