Cargando…
Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection
Nuclear entry represents the final and decisive infection step for most DNA viruses, although how this is accomplished by some viruses is unclear. Polyomavirus SV40 transports from the cell surface through the endosome, the endoplasmic reticulum, and the cytosol from where it enters the nucleus to c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481172/ https://www.ncbi.nlm.nih.gov/pubmed/36067270 http://dx.doi.org/10.1371/journal.ppat.1010824 |
_version_ | 1784791204939956224 |
---|---|
author | Spriggs, Chelsey C. Cha, Grace Li, Jiaqian Tsai, Billy |
author_facet | Spriggs, Chelsey C. Cha, Grace Li, Jiaqian Tsai, Billy |
author_sort | Spriggs, Chelsey C. |
collection | PubMed |
description | Nuclear entry represents the final and decisive infection step for most DNA viruses, although how this is accomplished by some viruses is unclear. Polyomavirus SV40 transports from the cell surface through the endosome, the endoplasmic reticulum, and the cytosol from where it enters the nucleus to cause infection. Here we elucidate the nuclear entry mechanism of SV40. Our results show that cytosol-localized SV40 is targeted to the nuclear envelope by directly engaging Nesprin-2 of the linker of nucleoskeleton and cytoskeleton (LINC) nuclear membrane complex. Additionally, we identify the NUP188 subunit of the nuclear pore complex (NPC) as a new Nesprin-2-interacting partner. This physical proximity positions the NPC to capture SV40 upon release from Nesprin-2, enabling the channel to facilitate nuclear translocation of the virus. Strikingly, SV40 disassembles during nuclear entry, generating a viral genome-VP1-VP3 subcomplex that efficiently crosses the NPC to enter the nucleus. Our results reveal how two major nuclear membrane protein complexes are exploited to promote targeting and translocation of a virus into the nucleus. |
format | Online Article Text |
id | pubmed-9481172 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94811722022-09-17 Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection Spriggs, Chelsey C. Cha, Grace Li, Jiaqian Tsai, Billy PLoS Pathog Research Article Nuclear entry represents the final and decisive infection step for most DNA viruses, although how this is accomplished by some viruses is unclear. Polyomavirus SV40 transports from the cell surface through the endosome, the endoplasmic reticulum, and the cytosol from where it enters the nucleus to cause infection. Here we elucidate the nuclear entry mechanism of SV40. Our results show that cytosol-localized SV40 is targeted to the nuclear envelope by directly engaging Nesprin-2 of the linker of nucleoskeleton and cytoskeleton (LINC) nuclear membrane complex. Additionally, we identify the NUP188 subunit of the nuclear pore complex (NPC) as a new Nesprin-2-interacting partner. This physical proximity positions the NPC to capture SV40 upon release from Nesprin-2, enabling the channel to facilitate nuclear translocation of the virus. Strikingly, SV40 disassembles during nuclear entry, generating a viral genome-VP1-VP3 subcomplex that efficiently crosses the NPC to enter the nucleus. Our results reveal how two major nuclear membrane protein complexes are exploited to promote targeting and translocation of a virus into the nucleus. Public Library of Science 2022-09-06 /pmc/articles/PMC9481172/ /pubmed/36067270 http://dx.doi.org/10.1371/journal.ppat.1010824 Text en © 2022 Spriggs et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Spriggs, Chelsey C. Cha, Grace Li, Jiaqian Tsai, Billy Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection |
title | Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection |
title_full | Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection |
title_fullStr | Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection |
title_full_unstemmed | Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection |
title_short | Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection |
title_sort | components of the linc and npc complexes coordinately target and translocate a virus into the nucleus to promote infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481172/ https://www.ncbi.nlm.nih.gov/pubmed/36067270 http://dx.doi.org/10.1371/journal.ppat.1010824 |
work_keys_str_mv | AT spriggschelseyc componentsofthelincandnpccomplexescoordinatelytargetandtranslocateavirusintothenucleustopromoteinfection AT chagrace componentsofthelincandnpccomplexescoordinatelytargetandtranslocateavirusintothenucleustopromoteinfection AT lijiaqian componentsofthelincandnpccomplexescoordinatelytargetandtranslocateavirusintothenucleustopromoteinfection AT tsaibilly componentsofthelincandnpccomplexescoordinatelytargetandtranslocateavirusintothenucleustopromoteinfection |