Cargando…
White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp
Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481175/ https://www.ncbi.nlm.nih.gov/pubmed/36067252 http://dx.doi.org/10.1371/journal.ppat.1010808 |
_version_ | 1784791205676056576 |
---|---|
author | Hong, Pan-Pan Li, Cang Niu, Guo-Juan Zhao, Xiao-Fan Wang, Jin-Xing |
author_facet | Hong, Pan-Pan Li, Cang Niu, Guo-Juan Zhao, Xiao-Fan Wang, Jin-Xing |
author_sort | Hong, Pan-Pan |
collection | PubMed |
description | Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture. |
format | Online Article Text |
id | pubmed-9481175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94811752022-09-17 White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp Hong, Pan-Pan Li, Cang Niu, Guo-Juan Zhao, Xiao-Fan Wang, Jin-Xing PLoS Pathog Research Article Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture. Public Library of Science 2022-09-06 /pmc/articles/PMC9481175/ /pubmed/36067252 http://dx.doi.org/10.1371/journal.ppat.1010808 Text en © 2022 Hong et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hong, Pan-Pan Li, Cang Niu, Guo-Juan Zhao, Xiao-Fan Wang, Jin-Xing White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp |
title | White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp |
title_full | White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp |
title_fullStr | White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp |
title_full_unstemmed | White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp |
title_short | White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp |
title_sort | white spot syndrome virus directly activates mtorc1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481175/ https://www.ncbi.nlm.nih.gov/pubmed/36067252 http://dx.doi.org/10.1371/journal.ppat.1010808 |
work_keys_str_mv | AT hongpanpan whitespotsyndromevirusdirectlyactivatesmtorc1signalingtofacilitateitsreplicationviapolymericimmunoglobulinreceptormediatedinfectioninshrimp AT licang whitespotsyndromevirusdirectlyactivatesmtorc1signalingtofacilitateitsreplicationviapolymericimmunoglobulinreceptormediatedinfectioninshrimp AT niuguojuan whitespotsyndromevirusdirectlyactivatesmtorc1signalingtofacilitateitsreplicationviapolymericimmunoglobulinreceptormediatedinfectioninshrimp AT zhaoxiaofan whitespotsyndromevirusdirectlyactivatesmtorc1signalingtofacilitateitsreplicationviapolymericimmunoglobulinreceptormediatedinfectioninshrimp AT wangjinxing whitespotsyndromevirusdirectlyactivatesmtorc1signalingtofacilitateitsreplicationviapolymericimmunoglobulinreceptormediatedinfectioninshrimp |