Cargando…

What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics

The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the...

Descripción completa

Detalles Bibliográficos
Autores principales: Soler-Toscano, Fernando, Galadí, Javier A., Escrichs, Anira, Sanz Perl, Yonatan, López-González, Ane, Sitt, Jacobo D., Annen, Jitka, Gosseries, Olivia, Thibaut, Aurore, Panda, Rajanikant, Esteban, Francisco J., Laureys, Steven, Kringelbach, Morten L., Langa, José A., Deco, Gustavo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481177/
https://www.ncbi.nlm.nih.gov/pubmed/36067227
http://dx.doi.org/10.1371/journal.pcbi.1010412
_version_ 1784791206172033024
author Soler-Toscano, Fernando
Galadí, Javier A.
Escrichs, Anira
Sanz Perl, Yonatan
López-González, Ane
Sitt, Jacobo D.
Annen, Jitka
Gosseries, Olivia
Thibaut, Aurore
Panda, Rajanikant
Esteban, Francisco J.
Laureys, Steven
Kringelbach, Morten L.
Langa, José A.
Deco, Gustavo
author_facet Soler-Toscano, Fernando
Galadí, Javier A.
Escrichs, Anira
Sanz Perl, Yonatan
López-González, Ane
Sitt, Jacobo D.
Annen, Jitka
Gosseries, Olivia
Thibaut, Aurore
Panda, Rajanikant
Esteban, Francisco J.
Laureys, Steven
Kringelbach, Morten L.
Langa, José A.
Deco, Gustavo
author_sort Soler-Toscano, Fernando
collection PubMed
description The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.
format Online
Article
Text
id pubmed-9481177
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-94811772022-09-17 What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics Soler-Toscano, Fernando Galadí, Javier A. Escrichs, Anira Sanz Perl, Yonatan López-González, Ane Sitt, Jacobo D. Annen, Jitka Gosseries, Olivia Thibaut, Aurore Panda, Rajanikant Esteban, Francisco J. Laureys, Steven Kringelbach, Morten L. Langa, José A. Deco, Gustavo PLoS Comput Biol Research Article The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or ‘information structure’), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision. Public Library of Science 2022-09-06 /pmc/articles/PMC9481177/ /pubmed/36067227 http://dx.doi.org/10.1371/journal.pcbi.1010412 Text en © 2022 Soler-Toscano et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Soler-Toscano, Fernando
Galadí, Javier A.
Escrichs, Anira
Sanz Perl, Yonatan
López-González, Ane
Sitt, Jacobo D.
Annen, Jitka
Gosseries, Olivia
Thibaut, Aurore
Panda, Rajanikant
Esteban, Francisco J.
Laureys, Steven
Kringelbach, Morten L.
Langa, José A.
Deco, Gustavo
What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
title What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
title_full What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
title_fullStr What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
title_full_unstemmed What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
title_short What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics
title_sort what lies underneath: precise classification of brain states using time-dependent topological structure of dynamics
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481177/
https://www.ncbi.nlm.nih.gov/pubmed/36067227
http://dx.doi.org/10.1371/journal.pcbi.1010412
work_keys_str_mv AT solertoscanofernando whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT galadijaviera whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT escrichsanira whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT sanzperlyonatan whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT lopezgonzalezane whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT sittjacobod whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT annenjitka whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT gosseriesolivia whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT thibautaurore whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT pandarajanikant whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT estebanfranciscoj whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT laureyssteven whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT kringelbachmortenl whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT langajosea whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics
AT decogustavo whatliesunderneathpreciseclassificationofbrainstatesusingtimedependenttopologicalstructureofdynamics