Cargando…
Leveraging Advanced Data Analytics to Predict the Risk of All-Cause Seven-Day Emergency Readmissions
Introduction Emergency readmissions have been a long-time, multifaceted, unsolved problem. Developing a predictive model calibrated with hospital-specific Electronic Health Record (EHR) data could give higher prediction accuracy and insights into high-risk patients for readmission. Thus, we need to...
Autores principales: | Aldhoayan, Mohammed D, Khayat, Afnan M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481186/ https://www.ncbi.nlm.nih.gov/pubmed/36127978 http://dx.doi.org/10.7759/cureus.27630 |
Ejemplares similares
-
A Machine Learning Model for Predicting the Risk of Readmission in Community-Acquired Pneumonia
por: Aldhoayan, Mohammed D, et al.
Publicado: (2022) -
Weak Handgrip at Index Admission for Acute Exacerbation of COPD Predicts All-Cause 30-Day Readmission
por: Witt, Leah J., et al.
Publicado: (2021) -
A Realist Evaluation of a 72-Hour Readmission Audit and Feedback (A&F) Intervention in Emergency Medicine
por: Kennedy, William, et al.
Publicado: (2021) -
Leveraging Google Scholar to Facilitate Resident Research Reporting
por: Gottlieb, Michael, et al.
Publicado: (2021) -
Fahr Disease: A Rare Cause of First-Time Seizure in the Emergency Department
por: Aldawsari, Faleh M, et al.
Publicado: (2021)