Cargando…
Abnormal ECG detection based on an adversarial autoencoder
Automatic detection and alarm of abnormal electrocardiogram (ECG) events play an important role in an ECG monitor system; however, popular classification models based on supervised learning fail to detect abnormal ECG effectively. Thus, we propose an ECG anomaly detection framework (ECG-AAE) based o...
Autores principales: | Shan, Lianfeng, Li, Yu, Jiang, Hua, Zhou, Peng, Niu, Jing, Liu, Ran, Wei, Yuanyuan, Peng, Jiao, Yu, Huizhen, Sha, Xianzheng, Chang, Shijie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481281/ https://www.ncbi.nlm.nih.gov/pubmed/36117713 http://dx.doi.org/10.3389/fphys.2022.961724 |
Ejemplares similares
-
Multi-Domain Variational Autoencoders for Combined Modeling of MRI-Based Biventricular Anatomy and ECG-Based Cardiac Electrophysiology
por: Beetz, Marcel, et al.
Publicado: (2022) -
Face Aging by Explainable Conditional Adversarial Autoencoders
por: Korgialas, Christos, et al.
Publicado: (2023) -
Adversarial and variational autoencoders improve metagenomic binning
por: Líndez, Pau Piera, et al.
Publicado: (2023) -
Pacing Electrocardiogram Detection With Memory-Based Autoencoder and Metric Learning
por: Ge, Zhaoyang, et al.
Publicado: (2021) -
Incorporating structural abnormalities in equivalent dipole layer based ECG simulations
por: Boonstra, Machteld J, et al.
Publicado: (2022)