Cargando…
Cross-Domain Federated Data Modeling on Non-IID Data
Federated learning has received sustained attention in recent years for its distributed training model that fully satisfies the need for privacy concerns. However, under the nonindependent identical distribution, the data heterogeneity of different parties with different data patterns significantly...
Autores principales: | Chai, Baobao, Liu, Kun, Yang, Ruiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481315/ https://www.ncbi.nlm.nih.gov/pubmed/36120693 http://dx.doi.org/10.1155/2022/9739874 |
Ejemplares similares
-
DAG-Based Blockchain Sharding for Secure Federated Learning with Non-IID Data
por: Lee, Jungjae, et al.
Publicado: (2022) -
Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data
por: Seol, Mihye, et al.
Publicado: (2023) -
LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
por: Huang, Li, et al.
Publicado: (2020) -
Fair detection of poisoning attacks in federated learning on non-i.i.d. data
por: Singh, Ashneet Khandpur, et al.
Publicado: (2023) -
A Multiscale Clustering Approach for Non-IID Nominal Data
por: Chen, Runzi, et al.
Publicado: (2021)