Cargando…

Lite-3DCNN Combined with Attention Mechanism for Complex Human Movement Recognition

Three-dimensional convolutional network (3DCNN) is an essential field of motion recognition research. The research work of this paper optimizes the traditional three-dimensional convolution network, introduces the self-attention mechanism, and proposes a new network model to analyze and process comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Maochang, Bin, Sheng, Sun, Gengxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481321/
https://www.ncbi.nlm.nih.gov/pubmed/36120684
http://dx.doi.org/10.1155/2022/4816549
Descripción
Sumario:Three-dimensional convolutional network (3DCNN) is an essential field of motion recognition research. The research work of this paper optimizes the traditional three-dimensional convolution network, introduces the self-attention mechanism, and proposes a new network model to analyze and process complex human motion videos. In this study, the average frame skipping sampling and scaling and the one-hot encoding are used for data pre-processing to retain more features in the limited data. The experimental results show that this paper innovatively designs a lightweight three-dimensional convolutional network combined with an attention mechanism framework, and the number of parameters of the model is reduced by more than 90% to only about 1.7 million. This study compared the performance of different models in different classifications and found that the model proposed in this study performed well in complex human motion video classification. Its recognition rate increased by 1%–8% compared with the C3D model.