Cargando…
Lite-3DCNN Combined with Attention Mechanism for Complex Human Movement Recognition
Three-dimensional convolutional network (3DCNN) is an essential field of motion recognition research. The research work of this paper optimizes the traditional three-dimensional convolution network, introduces the self-attention mechanism, and proposes a new network model to analyze and process comp...
Autores principales: | Zhu, Maochang, Bin, Sheng, Sun, Gengxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481321/ https://www.ncbi.nlm.nih.gov/pubmed/36120684 http://dx.doi.org/10.1155/2022/4816549 |
Ejemplares similares
-
Surgical workflow recognition with 3DCNN for Sleeve Gastrectomy
por: Zhang, Bokai, et al.
Publicado: (2021) -
A 3DCNN-Based Knowledge Distillation Framework for Human Activity Recognition
por: Ullah, Hayat, et al.
Publicado: (2023) -
Signal Status Recognition Based on 1DCNN and Its Feature Extraction Mechanism Analysis
por: Huang, Shuzhan, et al.
Publicado: (2019) -
Dynamic Hand Gesture Recognition Using 3DCNN and LSTM with FSM Context-Aware Model
por: Hakim, Noorkholis Luthfil, et al.
Publicado: (2019) -
Identification of Turtle-Shell Growth Year Using Hyperspectral Imaging Combined with an Enhanced Spatial–Spectral Attention 3DCNN and a Transformer
por: Wang, Tingting, et al.
Publicado: (2023)