Cargando…

Gut Microbiota Profiles in Dairy Cattle from Highland and Coastal Regions Using Shotgun Metagenomic Approach

There is significant difference in milk production of highland and coastal regions in Indonesia of which the latter is critically low. The recent studies indicate a possibility of improving the milk yield and quality by manipulating the gut microbiota, for which profiling and abundance of gut microb...

Descripción completa

Detalles Bibliográficos
Autores principales: Prasetiyono, Bambang Waluyo Hadi Eko, Widiyanto, Widiyanto, Pandupuspitasari, Nuruliarizki Shinta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481326/
https://www.ncbi.nlm.nih.gov/pubmed/36119925
http://dx.doi.org/10.1155/2022/3659052
Descripción
Sumario:There is significant difference in milk production of highland and coastal regions in Indonesia of which the latter is critically low. The recent studies indicate a possibility of improving the milk yield and quality by manipulating the gut microbiota, for which profiling and abundance of gut microbiota in these divergent regions need to be addressed. The present study was the first of its kind to explore the dairy cattle gut microbiota diversity, abundance, and functional annotation of the two divergent Indonesian regions, the highland and coastal regions, by shotgun metagenomic approach. Unfavorable environmental conditions such as type of forage grass in coastal regions and high temperature remain a limiting factor; however, the improvement through manipulating the gut microbiota was not considered until recently to improve the quality and quantity of coastal region dairy cattle. The application of recent advance technologies can help achieve this goal on sustainable basis. The results show Bacteroidetes in higher abundance in coastal region (FPP) than in highland (Salatiga) while Firmicutes were higher in Salatiga. Furthermore, a collective physiology of the community was found by annotating the sequences against KEGG, eggNOG, and CAZy databases. To identify the role in pathways, an mPATH analysis was performed to have insight into the microbiota community in different metabolic pathways. The identified targets can be used as prebiotic and/or probiotic to improve the average milk yield of coastal region dairy cattle by manipulating the dairy feed with desired microbes.