Cargando…
A Deep Neural Network for Gastric Cancer Prognosis Prediction Based on Biological Information Pathways
BACKGROUND: Gastric cancer (GC) is one of the deadliest cancers in the world, with a 5-year overall survival rate of lower than 20% for patients with advanced GC. Genomic information is now frequently employed for precision cancer treatment due to the rapid advancements of high-throughput sequencing...
Autores principales: | Hu, Jili, Yu, Weiqiang, Dai, Yuting, Liu, Can, Wang, Yongkang, Wu, Qingfa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481367/ https://www.ncbi.nlm.nih.gov/pubmed/36117847 http://dx.doi.org/10.1155/2022/2965166 |
Ejemplares similares
-
A classification method of gastric cancer subtype based on residual graph convolution network
por: Liu, Can, et al.
Publicado: (2023) -
Profiling the Tumor-Infiltrating Lymphocytes in Gastric Cancer Reveals Its Implication in the Prognosis
por: Yu, Weiqiang, et al.
Publicado: (2022) -
Biological informed graph neural network for tumor mutation burden prediction and immunotherapy-related pathway analysis in gastric cancer
por: Liu, Chuwei, et al.
Publicado: (2023) -
Biologically informed deep neural network for prostate cancer discovery
por: Elmarakeby, Haitham A., et al.
Publicado: (2021) -
Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition
por: Zhang, Hua, et al.
Publicado: (2021)