Cargando…
Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity
Clustering is a powerful machine learning method for discovering similar patterns according to the proximity of elements in feature space. It is widely used in computer science, bioscience, geoscience, and economics. Although the state-of-the-art partition-based and connectivity-based clustering met...
Autores principales: | Peng, Dehua, Gui, Zhipeng, Wang, Dehe, Ma, Yuncheng, Huang, Zichen, Zhou, Yu, Wu, Huayi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481560/ https://www.ncbi.nlm.nih.gov/pubmed/36114209 http://dx.doi.org/10.1038/s41467-022-33136-9 |
Ejemplares similares
-
Density center-based fast clustering of widefield fluorescence imaging of cortical mesoscale functional connectivity and relation to structural connectivity
por: Li, Miaowen, et al.
Publicado: (2019) -
Direct Measurement of the Local Density of Optical States in the Time
Domain
por: ter Huurne, Stan E. T., et al.
Publicado: (2023) -
Weakly connected neural networks
por: Hoppensteadt, Frank C, et al.
Publicado: (1997) -
Spatial and Temporal Heterogeneities of Aedes albopictus Density in La Reunion Island: Rise and Weakness of Entomological Indices
por: Boyer, Sebastien, et al.
Publicado: (2014) -
Linear Weak Scalability of Density Functional Theory
Calculations without Imposing Electron Localization
por: Fabian, Marcel D., et al.
Publicado: (2022)