Cargando…
On a two-dimensional model of generalized thermoelasticity with application
A 2D first order linear system of partial differential equations of plane strain thermoelasticity within the frame of extended thermodynamics is presented and analyzed. The system is composed of the equations of classical thermoelasticity in which displacements are replaced with velocities, compleme...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481564/ https://www.ncbi.nlm.nih.gov/pubmed/36114264 http://dx.doi.org/10.1038/s41598-022-19656-w |
Sumario: | A 2D first order linear system of partial differential equations of plane strain thermoelasticity within the frame of extended thermodynamics is presented and analyzed. The system is composed of the equations of classical thermoelasticity in which displacements are replaced with velocities, complemented with Cattaneo evolution equation for heat flux. For a particular choice of the characteristic quantities and for positive thermal conductivity, it is shown that this system may be cast in a form that is symmetric t-hyperbolic without further recurrence to entropy principle. While hyperbolicity means a finite speed of propagation of heat waves, it is known that symmetric hyperbolic systems have the desirable property of well-posedness of Cauchy problems. A study of the characteristics of this system is carried out, and an energy integral is derived, that can be used to prove uniqueness of solution under some boundary conditions. A numerical application for a finite slab is considered and the numerical results are plotted and discussed. In particular, the wave propagation nature of the solution is put in evidence. |
---|