Cargando…
Genic distribution modelling predicts adaptation of the bank vole to climate change
The most likely pathway for many species to survive future climate change is by pre-existing trait variation providing a fitness advantage under the new climate. Here we evaluate the potential role of haemoglobin (Hb) variation in bank voles under future climate change. We model gene-climate relatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481625/ https://www.ncbi.nlm.nih.gov/pubmed/36114276 http://dx.doi.org/10.1038/s42003-022-03935-3 |
Sumario: | The most likely pathway for many species to survive future climate change is by pre-existing trait variation providing a fitness advantage under the new climate. Here we evaluate the potential role of haemoglobin (Hb) variation in bank voles under future climate change. We model gene-climate relationships for two functionally distinct Hb types, HbS and HbF, which have a north-south distribution in Britain presenting an unusually tractable system linking genetic variation in physiology to geographical and temporal variation in climate. Projections to future climatic conditions suggest a change in relative climatic suitability that would result in HbS being displaced by HbF in northern Britain. This would facilitate local adaptation to future climate—without Hb displacement, populations in northern Britain would likely be suboptimally adapted because their Hb would not match local climatic conditions. Our study shows how pre-existing physiological differences can influence the adaptive capacity of species to climate change. |
---|