Cargando…

Loss of endosomal exchanger NHE6 leads to pathological changes in tau in human neurons

Disruption of endolysosomal and autophagy-lysosomal systems is increasingly implicated in neurodegeneration. Sodium-proton exchanger 6 (NHE6) contributes to the maintenance of proper endosomal pH, and loss-of function mutations in the X-linked NHE6 lead to Christianson syndrome (CS) in males. Neurod...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandez, Marty A., Bah, Fatmata, Ma, Li, Lee, YouJin, Schmidt, Michael, Welch, Elizabeth, Morrow, Eric M., Young-Pearse, Tracy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481919/
https://www.ncbi.nlm.nih.gov/pubmed/36055242
http://dx.doi.org/10.1016/j.stemcr.2022.08.001
Descripción
Sumario:Disruption of endolysosomal and autophagy-lysosomal systems is increasingly implicated in neurodegeneration. Sodium-proton exchanger 6 (NHE6) contributes to the maintenance of proper endosomal pH, and loss-of function mutations in the X-linked NHE6 lead to Christianson syndrome (CS) in males. Neurodegenerative features of CS are increasingly recognized, with postmortem and clinical data implicating a role for tau. We generated cortical neurons from NHE6 knockout (KO) and isogenic wild-type control human induced pluripotent stem cells. We report elevated phosphorylated and sarkosyl-insoluble tau in NHE6 KO neurons. We demonstrate that NHE6 KO leads to lysosomal and autophagy dysfunction involving reduced lysosomal number and protease activity, diminished autophagic flux, and p62 accumulation. Finally, we show that treatment with trehalose or rapamycin, two enhancers of autophagy-lysosomal function, each partially rescue this tau phenotype. We provide insight into the neurodegenerative processes underlying NHE6 loss of function and into the broader role of the endosome-lysosome-autophagy network in neurodegeneration.