Cargando…
Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation
Hao et al. (2022) present DTox (deep learning for toxicology), a neural network designed to predict and probe the sites and potential mechanisms underlying chemical toxicity; results provide a map to facilitate modular testing and improvements across multiple disparate applications.
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481942/ https://www.ncbi.nlm.nih.gov/pubmed/36124303 http://dx.doi.org/10.1016/j.patter.2022.100586 |
_version_ | 1784791351121936384 |
---|---|
author | Sniatynski, Matthew J. Kristal, Bruce S. |
author_facet | Sniatynski, Matthew J. Kristal, Bruce S. |
author_sort | Sniatynski, Matthew J. |
collection | PubMed |
description | Hao et al. (2022) present DTox (deep learning for toxicology), a neural network designed to predict and probe the sites and potential mechanisms underlying chemical toxicity; results provide a map to facilitate modular testing and improvements across multiple disparate applications. |
format | Online Article Text |
id | pubmed-9481942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94819422022-09-18 Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation Sniatynski, Matthew J. Kristal, Bruce S. Patterns (N Y) Preview Hao et al. (2022) present DTox (deep learning for toxicology), a neural network designed to predict and probe the sites and potential mechanisms underlying chemical toxicity; results provide a map to facilitate modular testing and improvements across multiple disparate applications. Elsevier 2022-09-09 /pmc/articles/PMC9481942/ /pubmed/36124303 http://dx.doi.org/10.1016/j.patter.2022.100586 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Preview Sniatynski, Matthew J. Kristal, Bruce S. Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation |
title | Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation |
title_full | Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation |
title_fullStr | Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation |
title_full_unstemmed | Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation |
title_short | Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation |
title_sort | predicting drug toxicity at the intersection of informatics and biology: dtox builds a foundation |
topic | Preview |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481942/ https://www.ncbi.nlm.nih.gov/pubmed/36124303 http://dx.doi.org/10.1016/j.patter.2022.100586 |
work_keys_str_mv | AT sniatynskimatthewj predictingdrugtoxicityattheintersectionofinformaticsandbiologydtoxbuildsafoundation AT kristalbruces predictingdrugtoxicityattheintersectionofinformaticsandbiologydtoxbuildsafoundation |