Cargando…
Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation
Hao et al. (2022) present DTox (deep learning for toxicology), a neural network designed to predict and probe the sites and potential mechanisms underlying chemical toxicity; results provide a map to facilitate modular testing and improvements across multiple disparate applications.
Autores principales: | Sniatynski, Matthew J., Kristal, Bruce S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481942/ https://www.ncbi.nlm.nih.gov/pubmed/36124303 http://dx.doi.org/10.1016/j.patter.2022.100586 |
Ejemplares similares
-
Modeling in systems biology: Causal understanding before prediction?
por: Barsi, Szilvia, et al.
Publicado: (2021) -
Building Blastocysts from Stem Cells
por: Pour, Maayan, et al.
Publicado: (2019) -
Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
por: Patterson, Sarah, et al.
Publicado: (2022) -
More fuel for the fire: Gut microbes and toxicity to immune agonist antibodies in cancer
por: Chelvanambi, Manoj, et al.
Publicado: (2021) -
Third-generation rabies viral vectors have low toxicity and improved efficiency as retrograde labeling tools
por: Schwarz, Lindsay A.
Publicado: (2023)