Cargando…
Rising temperatures threaten pollinators of fig trees—Keystone resources of tropical forests
Pollinating insects are decreasing worldwide in abundance, biomass, and species richness, affecting the plants that rely on pollinators for fruit production and seed set. Insects are often sensitive to high temperatures. The projected temperature increases may therefore severely affect plants that r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482004/ https://www.ncbi.nlm.nih.gov/pubmed/36177123 http://dx.doi.org/10.1002/ece3.9311 |
Sumario: | Pollinating insects are decreasing worldwide in abundance, biomass, and species richness, affecting the plants that rely on pollinators for fruit production and seed set. Insects are often sensitive to high temperatures. The projected temperature increases may therefore severely affect plants that rely on insect pollinators. Highly specialized mutualisms are expected to be particularly vulnerable to change because they have fewer partner options should one partner become unavailable. In the highly specialized mutualism between fig trees and their pollinating fig wasp, each fig species is pollinated by only one or a few wasp species. Because of their year‐round fruit production, fig trees are considered a keystone resource for tropical forests. However, to produce fruits, wild fig trees need to be pollinated by fig wasps that typically travel a long one‐way trip from the tree donating pollen to the tree receiving pollen. In a few previous studies from China and Australia, increasing temperatures dramatically decreased fig wasp lifespan. Are these grim results generalizable to fig mutualisms globally? Here, we use survival experiments to determine the effect of increasing temperature on the lifespan of Neotropical fig wasps associated with five common Panamanian Ficus species. Experimental temperatures were based on the current daytime mean temperature of 26.8°C (2SD: 21.6–31.7°C) and the predicted local temperature increase of 1–4°C by the end of the 21st century. We found that all tested pollinator wasp species had a significantly shorter lifespan in 30, 32, 34, and 36°C compared to the current diurnal mean temperature of 26°C. At 36°C pollinator median lifespan decreased to merely 2–10 h (6%–19% of their median lifespan at 26°C). Unless wasps can adapt, such a dramatic reduction in lifespan is expected to reduce the number of pollinators that successfully disperse to flowering fig trees, and may therefore jeopardize both fruit set and eventually survival of the mutualism. |
---|