Cargando…
Explainable machine learning analysis reveals sex and gender differences in the phenotypic and neurobiological markers of Cannabis Use Disorder
Cannabis Use Disorder (CUD) has been linked to a complex set of neuro-behavioral risk factors. While many studies have revealed sex and gender differences, the relative importance of these risk factors by sex and gender has not been described. We used an “explainable” machine learning approach that...
Autores principales: | Niklason, Gregory R., Rawls, Eric, Ma, Sisi, Kummerfeld, Erich, Maxwell, Andrea M., Brucar, Leyla R., Drossel, Gunner, Zilverstand, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482622/ https://www.ncbi.nlm.nih.gov/pubmed/36115920 http://dx.doi.org/10.1038/s41598-022-19804-2 |
Ejemplares similares
-
Subtypes in addiction and their neurobehavioral profiles across three functional domains
por: Drossel, Gunner, et al.
Publicado: (2023) -
An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
por: Rawls, Eric, et al.
Publicado: (2021) -
The resting-state causal human connectome is characterized by hub connectivity of executive and attentional networks
por: Rawls, Eric, et al.
Publicado: (2022) -
Gender Differences in the Psychosocial Determinants Underlying the Onset and Maintenance of Alcohol Use Disorder
por: Maxwell, Andrea M., et al.
Publicado: (2022) -
Cannabis and psychosis: Neurobiology
por: Shrivastava, Amresh, et al.
Publicado: (2014)