Cargando…

A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia

Here we present a geographically diverse, temporally consistent, and nationally relevant land cover (LC) reference dataset collected by visual interpretation of very high spatial resolution imagery, in a national-scale crowdsourcing campaign (targeting seven generic LC classes) and a series of exper...

Descripción completa

Detalles Bibliográficos
Autores principales: Hadi, Yowargana, Ping, Zulkarnain, Muhammad Thoha, Mohamad, Fathir, Goib, Bunga K., Hultera, Paul, Sturn, Tobias, Karner, Mathias, Dürauer, Martina, See, Linda, Fritz, Steffen, Hendriatna, Adis, Nursafingi, Afi, Melati, Dian Nuraini, Prasetya, F. V. Astrolabe Sian, Carolita, Ita, Kiswanto, Firdaus, Muhammad Iqbal, Rosidi, Muhammad, Kraxner, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482649/
https://www.ncbi.nlm.nih.gov/pubmed/36115866
http://dx.doi.org/10.1038/s41597-022-01689-5
_version_ 1784791501322059776
author Hadi
Yowargana, Ping
Zulkarnain, Muhammad Thoha
Mohamad, Fathir
Goib, Bunga K.
Hultera, Paul
Sturn, Tobias
Karner, Mathias
Dürauer, Martina
See, Linda
Fritz, Steffen
Hendriatna, Adis
Nursafingi, Afi
Melati, Dian Nuraini
Prasetya, F. V. Astrolabe Sian
Carolita, Ita
Kiswanto
Firdaus, Muhammad Iqbal
Rosidi, Muhammad
Kraxner, Florian
author_facet Hadi
Yowargana, Ping
Zulkarnain, Muhammad Thoha
Mohamad, Fathir
Goib, Bunga K.
Hultera, Paul
Sturn, Tobias
Karner, Mathias
Dürauer, Martina
See, Linda
Fritz, Steffen
Hendriatna, Adis
Nursafingi, Afi
Melati, Dian Nuraini
Prasetya, F. V. Astrolabe Sian
Carolita, Ita
Kiswanto
Firdaus, Muhammad Iqbal
Rosidi, Muhammad
Kraxner, Florian
author_sort Hadi
collection PubMed
description Here we present a geographically diverse, temporally consistent, and nationally relevant land cover (LC) reference dataset collected by visual interpretation of very high spatial resolution imagery, in a national-scale crowdsourcing campaign (targeting seven generic LC classes) and a series of expert workshops (targeting seventeen detailed LC classes) in Indonesia. The interpreters were citizen scientists (crowd/non-experts) and local LC visual interpretation experts from different regions in the country. We provide the raw LC reference dataset, as well as a quality-filtered dataset, along with the quality assessment indicators. We envisage that the dataset will be relevant for: (1) the LC mapping community (researchers and practitioners), i.e., as reference data for training machine learning algorithms and map accuracy assessment (with appropriate quality-filters applied), and (2) the citizen science community, i.e., as a sizable empirical dataset to investigate the potential and limitations of contributions from the crowd/non-experts, demonstrated for LC mapping in Indonesia for the first time to our knowledge, within the context of complementing traditional data collection by expert interpreters.
format Online
Article
Text
id pubmed-9482649
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94826492022-09-19 A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia Hadi Yowargana, Ping Zulkarnain, Muhammad Thoha Mohamad, Fathir Goib, Bunga K. Hultera, Paul Sturn, Tobias Karner, Mathias Dürauer, Martina See, Linda Fritz, Steffen Hendriatna, Adis Nursafingi, Afi Melati, Dian Nuraini Prasetya, F. V. Astrolabe Sian Carolita, Ita Kiswanto Firdaus, Muhammad Iqbal Rosidi, Muhammad Kraxner, Florian Sci Data Data Descriptor Here we present a geographically diverse, temporally consistent, and nationally relevant land cover (LC) reference dataset collected by visual interpretation of very high spatial resolution imagery, in a national-scale crowdsourcing campaign (targeting seven generic LC classes) and a series of expert workshops (targeting seventeen detailed LC classes) in Indonesia. The interpreters were citizen scientists (crowd/non-experts) and local LC visual interpretation experts from different regions in the country. We provide the raw LC reference dataset, as well as a quality-filtered dataset, along with the quality assessment indicators. We envisage that the dataset will be relevant for: (1) the LC mapping community (researchers and practitioners), i.e., as reference data for training machine learning algorithms and map accuracy assessment (with appropriate quality-filters applied), and (2) the citizen science community, i.e., as a sizable empirical dataset to investigate the potential and limitations of contributions from the crowd/non-experts, demonstrated for LC mapping in Indonesia for the first time to our knowledge, within the context of complementing traditional data collection by expert interpreters. Nature Publishing Group UK 2022-09-17 /pmc/articles/PMC9482649/ /pubmed/36115866 http://dx.doi.org/10.1038/s41597-022-01689-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Hadi
Yowargana, Ping
Zulkarnain, Muhammad Thoha
Mohamad, Fathir
Goib, Bunga K.
Hultera, Paul
Sturn, Tobias
Karner, Mathias
Dürauer, Martina
See, Linda
Fritz, Steffen
Hendriatna, Adis
Nursafingi, Afi
Melati, Dian Nuraini
Prasetya, F. V. Astrolabe Sian
Carolita, Ita
Kiswanto
Firdaus, Muhammad Iqbal
Rosidi, Muhammad
Kraxner, Florian
A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia
title A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia
title_full A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia
title_fullStr A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia
title_full_unstemmed A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia
title_short A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia
title_sort national-scale land cover reference dataset from local crowdsourcing initiatives in indonesia
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482649/
https://www.ncbi.nlm.nih.gov/pubmed/36115866
http://dx.doi.org/10.1038/s41597-022-01689-5
work_keys_str_mv AT hadi anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT yowarganaping anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT zulkarnainmuhammadthoha anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT mohamadfathir anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT goibbungak anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT hulterapaul anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT sturntobias anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT karnermathias anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT durauermartina anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT seelinda anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT fritzsteffen anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT hendriatnaadis anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT nursafingiafi anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT melatidiannuraini anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT prasetyafvastrolabesian anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT carolitaita anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT kiswanto anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT firdausmuhammadiqbal anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT rosidimuhammad anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT kraxnerflorian anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT hadi nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT yowarganaping nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT zulkarnainmuhammadthoha nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT mohamadfathir nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT goibbungak nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT hulterapaul nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT sturntobias nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT karnermathias nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT durauermartina nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT seelinda nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT fritzsteffen nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT hendriatnaadis nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT nursafingiafi nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT melatidiannuraini nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT prasetyafvastrolabesian nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT carolitaita nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT kiswanto nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT firdausmuhammadiqbal nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT rosidimuhammad nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia
AT kraxnerflorian nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia