Cargando…
A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia
Here we present a geographically diverse, temporally consistent, and nationally relevant land cover (LC) reference dataset collected by visual interpretation of very high spatial resolution imagery, in a national-scale crowdsourcing campaign (targeting seven generic LC classes) and a series of exper...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482649/ https://www.ncbi.nlm.nih.gov/pubmed/36115866 http://dx.doi.org/10.1038/s41597-022-01689-5 |
_version_ | 1784791501322059776 |
---|---|
author | Hadi Yowargana, Ping Zulkarnain, Muhammad Thoha Mohamad, Fathir Goib, Bunga K. Hultera, Paul Sturn, Tobias Karner, Mathias Dürauer, Martina See, Linda Fritz, Steffen Hendriatna, Adis Nursafingi, Afi Melati, Dian Nuraini Prasetya, F. V. Astrolabe Sian Carolita, Ita Kiswanto Firdaus, Muhammad Iqbal Rosidi, Muhammad Kraxner, Florian |
author_facet | Hadi Yowargana, Ping Zulkarnain, Muhammad Thoha Mohamad, Fathir Goib, Bunga K. Hultera, Paul Sturn, Tobias Karner, Mathias Dürauer, Martina See, Linda Fritz, Steffen Hendriatna, Adis Nursafingi, Afi Melati, Dian Nuraini Prasetya, F. V. Astrolabe Sian Carolita, Ita Kiswanto Firdaus, Muhammad Iqbal Rosidi, Muhammad Kraxner, Florian |
author_sort | Hadi |
collection | PubMed |
description | Here we present a geographically diverse, temporally consistent, and nationally relevant land cover (LC) reference dataset collected by visual interpretation of very high spatial resolution imagery, in a national-scale crowdsourcing campaign (targeting seven generic LC classes) and a series of expert workshops (targeting seventeen detailed LC classes) in Indonesia. The interpreters were citizen scientists (crowd/non-experts) and local LC visual interpretation experts from different regions in the country. We provide the raw LC reference dataset, as well as a quality-filtered dataset, along with the quality assessment indicators. We envisage that the dataset will be relevant for: (1) the LC mapping community (researchers and practitioners), i.e., as reference data for training machine learning algorithms and map accuracy assessment (with appropriate quality-filters applied), and (2) the citizen science community, i.e., as a sizable empirical dataset to investigate the potential and limitations of contributions from the crowd/non-experts, demonstrated for LC mapping in Indonesia for the first time to our knowledge, within the context of complementing traditional data collection by expert interpreters. |
format | Online Article Text |
id | pubmed-9482649 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-94826492022-09-19 A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia Hadi Yowargana, Ping Zulkarnain, Muhammad Thoha Mohamad, Fathir Goib, Bunga K. Hultera, Paul Sturn, Tobias Karner, Mathias Dürauer, Martina See, Linda Fritz, Steffen Hendriatna, Adis Nursafingi, Afi Melati, Dian Nuraini Prasetya, F. V. Astrolabe Sian Carolita, Ita Kiswanto Firdaus, Muhammad Iqbal Rosidi, Muhammad Kraxner, Florian Sci Data Data Descriptor Here we present a geographically diverse, temporally consistent, and nationally relevant land cover (LC) reference dataset collected by visual interpretation of very high spatial resolution imagery, in a national-scale crowdsourcing campaign (targeting seven generic LC classes) and a series of expert workshops (targeting seventeen detailed LC classes) in Indonesia. The interpreters were citizen scientists (crowd/non-experts) and local LC visual interpretation experts from different regions in the country. We provide the raw LC reference dataset, as well as a quality-filtered dataset, along with the quality assessment indicators. We envisage that the dataset will be relevant for: (1) the LC mapping community (researchers and practitioners), i.e., as reference data for training machine learning algorithms and map accuracy assessment (with appropriate quality-filters applied), and (2) the citizen science community, i.e., as a sizable empirical dataset to investigate the potential and limitations of contributions from the crowd/non-experts, demonstrated for LC mapping in Indonesia for the first time to our knowledge, within the context of complementing traditional data collection by expert interpreters. Nature Publishing Group UK 2022-09-17 /pmc/articles/PMC9482649/ /pubmed/36115866 http://dx.doi.org/10.1038/s41597-022-01689-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Data Descriptor Hadi Yowargana, Ping Zulkarnain, Muhammad Thoha Mohamad, Fathir Goib, Bunga K. Hultera, Paul Sturn, Tobias Karner, Mathias Dürauer, Martina See, Linda Fritz, Steffen Hendriatna, Adis Nursafingi, Afi Melati, Dian Nuraini Prasetya, F. V. Astrolabe Sian Carolita, Ita Kiswanto Firdaus, Muhammad Iqbal Rosidi, Muhammad Kraxner, Florian A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia |
title | A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia |
title_full | A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia |
title_fullStr | A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia |
title_full_unstemmed | A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia |
title_short | A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia |
title_sort | national-scale land cover reference dataset from local crowdsourcing initiatives in indonesia |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482649/ https://www.ncbi.nlm.nih.gov/pubmed/36115866 http://dx.doi.org/10.1038/s41597-022-01689-5 |
work_keys_str_mv | AT hadi anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT yowarganaping anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT zulkarnainmuhammadthoha anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT mohamadfathir anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT goibbungak anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT hulterapaul anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT sturntobias anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT karnermathias anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT durauermartina anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT seelinda anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT fritzsteffen anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT hendriatnaadis anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT nursafingiafi anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT melatidiannuraini anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT prasetyafvastrolabesian anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT carolitaita anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT kiswanto anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT firdausmuhammadiqbal anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT rosidimuhammad anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT kraxnerflorian anationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT hadi nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT yowarganaping nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT zulkarnainmuhammadthoha nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT mohamadfathir nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT goibbungak nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT hulterapaul nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT sturntobias nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT karnermathias nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT durauermartina nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT seelinda nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT fritzsteffen nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT hendriatnaadis nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT nursafingiafi nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT melatidiannuraini nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT prasetyafvastrolabesian nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT carolitaita nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT kiswanto nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT firdausmuhammadiqbal nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT rosidimuhammad nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia AT kraxnerflorian nationalscalelandcoverreferencedatasetfromlocalcrowdsourcinginitiativesinindonesia |