Cargando…
A SuperLearner Approach to Predict Run-In Selection in Clinical Trials
A critical early step in a clinical trial is defining the study sample that appropriately represents the target population from which the sample will be drawn. Envisaging a “run-in” process in study design may accomplish this task; however, the traditional run-in requires additional patients, increa...
Autores principales: | Lanera, Corrado, Berchialla, Paola, Lorenzoni, Giulia, Acar, Aslihan Şentürk, Chiminazzo, Valentina, Azzolina, Danila, Gregori, Dario, Baldi, Ileana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482682/ https://www.ncbi.nlm.nih.gov/pubmed/36128052 http://dx.doi.org/10.1155/2022/4306413 |
Ejemplares similares
-
A SuperLearner-enforced approach for the estimation of treatment effect in pediatric trials
por: Azzolina, Danila, et al.
Publicado: (2023) -
Excess of all-cause mortality is only partially explained by COVID-19 in Veneto (Italy) during spring outbreak
por: Gallo, Elisa, et al.
Publicado: (2021) -
COVID-19 ICU mortality prediction: a machine learning approach using SuperLearner algorithm
por: Lorenzoni, Giulia, et al.
Publicado: (2021) -
Is a more aggressive COVID-19 case detection approach mitigating the burden on ICUs? Some reflections from Italy
por: Lorenzoni, Giulia, et al.
Publicado: (2020) -
The Role of Genetic Factors in Characterizing Extra-Intestinal Manifestations in Crohn’s Disease Patients: Are Bayesian Machine Learning Methods Improving Outcome Predictions?
por: Bottigliengo, Daniele, et al.
Publicado: (2019)