Cargando…
From compute to care: Lessons learned from deploying an early warning system into clinical practice
BACKGROUND: Deploying safe and effective machine learning models is essential to realize the promise of artificial intelligence for improved healthcare. Yet, there remains a large gap between the number of high-performing ML models trained on healthcare data and the actual deployment of these models...
Autores principales: | Pou-Prom, Chloé, Murray, Joshua, Kuzulugil, Sebnem, Mamdani, Muhammad, Verma, Amol A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483018/ https://www.ncbi.nlm.nih.gov/pubmed/36133802 http://dx.doi.org/10.3389/fdgth.2022.932123 |
Ejemplares similares
-
Developing and Validating a Prediction Model For Death or Critical Illness in Hospitalized Adults, an Opportunity for Human-Computer Collaboration
por: Verma, Amol A., et al.
Publicado: (2023) -
Thematic analyses of participant survey responses following dermatology ECHO programs with dermoscopy: Practical tips and lessons learned
por: Black, T. Austin, et al.
Publicado: (2023) -
Clinical deployment environments: Five pillars of translational machine learning for health
por: Harris, Steve, et al.
Publicado: (2022) -
Deployment and validation of an AI system for detecting abnormal chest radiographs in clinical settings
por: Nguyen, Ngoc Huy, et al.
Publicado: (2022) -
Early Warning Signs of a Mental Health Tsunami: A Coordinated Response to Gather Initial Data Insights From Multiple Digital Services Providers
por: Inkster, Becky
Publicado: (2021)