Cargando…
A hybrid generative adversarial network for weakly-supervised cloud detection in multispectral images
Cloud detection is a crucial step in the optical satellite image processing pipeline for Earth observation. Clouds in optical remote sensing images seriously affect the visibility of the background and greatly reduce the usability of images for land applications. Traditional methods based on thresho...
Autores principales: | Li, Jun, Wu, Zhaocong, Sheng, Qinghong, Wang, Bo, Hu, Zhongwen, Zheng, Shaobo, Camps-Valls, Gustau, Molinier, Matthieu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Elsevier Pub. Co
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483037/ https://www.ncbi.nlm.nih.gov/pubmed/36193118 http://dx.doi.org/10.1016/j.rse.2022.113197 |
Ejemplares similares
-
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
por: Moreno-Martínez, Álvaro, et al.
Publicado: (2020) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas
por: Islam, Kazi Aminul, et al.
Publicado: (2020) -
Particle Cloud Generation with Message Passing Generative Adversarial Networks
por: Kansal, Raghav, et al.
Publicado: (2021) -
Commentary on ‘Physics-informed deep learning parameterization of ocean vertical mixing improves climate simulations’ by Zhu et al.
por: Camps-Valls, Gustau
Publicado: (2022)